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SUMMARY
As social creatures, we are naturally swayed by the opinions of others, which largely shape our attitudes and
preferences. However, whether social influence can directly impact our visual perceptual experience remains
debated. We designed a two-phase dyadic training paradigm where participants first made a visual catego-
rization judgment and then were informed of an alleged social partner’s choice on the same stimulus. Results
demonstrated that social influence significantly modified participants’ subsequent visual categorizations,
evenwhen they had beenwell-trained prior to the dyadic training. This effect persisted for an extended period
of up to six weeks. Diffusion model analysis revealed that this effect stemmed from perceptual processing
more than mere response bias, and its strength was inversely related to the participants’ confidence and
autistic-like tendencies. These findings offer compelling evidence that our perceptual experiences are deeply
influenced by social factors, with individual confidence and personality traits playing significant roles.
INTRODUCTION

People often consider themselves independent thinkers, free to

make their own choices. However, our minds and actions are

inevitably influenced by observing others’ opinions or behaviors,

either explicitly or implicitly, a phenomenon known as social in-

fluence.1,2 For example, our preferences for goods are influ-

enced by what other people prefer,3 and observing peers’

choices can alter our risk preferences.4 Apart from these delib-

erate decisions that rely on high-level cognitive functions,5 social

influence also extends to low-level perceptual decision-mak-

ing.6,7 Recent work has shown that sharing information between

groupmembers significantly modifies the collective decisions on

simple visual perceptual tasks.8,9

Perceptual decision-making is typically regarded as a process

that largely mirrors the physical reality of the external world. The

brain extracts sensory signals represented in the sensory cortex

and transforms these signals across sensorimotor and motor

areas to construct veridical percepts and guide adaptive behav-

iors.10 Perceptual processing is usually thought to be relatively

automatic and stable.11 Nonetheless, it has been reported that

individuals within a group tend to conform to themajority opinion

in perceptual tasks, even though the majority are blatantly

wrong.12,13 Whether social influence can directly impact our

perceptual processing remains debated. Several studies have

demonstrated that social influence can dynamically alter the

way people perceive incoming sensory information.14–16 How-

ever, some other work has shown that social influence modifies
iScience 28, 111716, Febru
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decision process through shifting subjective response ten-

dencies in line with social norms but not affecting perceptual

experience.17 That is, people may change their reported per-

cepts or responses merely for social acceptance while still inter-

nally adhering to their initial percepts, suggesting that social in-

fluence might only lead to a transient response change rather

than an enduring perceptual alteration. Here, we aim to investi-

gate whether social influence engenders a genuine perceptual

change that can be long-lasting and persistent, evenwhen social

context is absent. To the best of our knowledge, there has been

no investigation of social influence on perceptual decisions over

a long period.

In the present study, we adopted a dyadic training paradigm in

which participants were trained on a visual categorization task in

pairs, and each of them was informed of an alleged social part-

ner’s choice on the same stimuli (i.e., social feedback) during

training. We tested individuals’ ability to categorize the visual

patterns before and immediately after the social learning, with

a re-test six weeks later (Figure 1), which allowed us to examine

the stability of perceptual changes after training with social feed-

back. In addition, we modeled observers’ behavioral responses

during the dyadic training phase using a drift-diffusion model

(DDM)18 to characterize the cognitive processes involved in vi-

sual categorization and evaluate the social influence on these

processes. In the framework of DDM, perceptual decision-mak-

ing is described as a process that brain accumulates noisy sen-

sory evidence over time until a certain amount of information

(i.e., decision threshold) is obtained to reach a decision.19
ary 21, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Stimuli and experimental design

(A) Stimuli: four example Glass pattern stimuli

(100% signal) at spiral angles of 0�, 30�, 60�, and
90�. The testing spiral angles are indicated by

black bars.

(B) Trial design in dyadic training. Each trial started

with a red cue and comprised two decision pha-

ses. Observers were first presented with a Glass

pattern stimulus and were asked to make a cate-

gorical judgment (radial vs. concentric) as well as

rate their confidence in that decision on a discrete

scale from 1 to 7 (initial decision phase). They were

informed of their partner’s choices displayed un-

derneath their corresponding portraits. Then, ob-

servers viewed a second Glass pattern stimulus at

the same spiral angle as in the initial decision

phase and reported their second judgment and

confidence (revised decision phase).

(C) Experimental protocol and design in experi-

ments 1–3. All the observers underwent three

stages (pretest, training, and posttest) over multi-

ple task blocks on the same day. A subgroup of

participants in experiment 2 had an additional re-

test six weeks after training. In experiments 1 and

2, observers were paired to perform the visual

categorization task simultaneously seated in two

adjacent rooms and each one was informed of an

alleged social partner’s choice on the same stim-

ulus during training. The peers’ responses were

simulated using an algorithm based on an unbi-

ased (45�, experiment 1) or shifted (60�, experi-
ment 2) categorization boundary. Observers in

experiment 3 were trained individually without any

feedback. During the test phases, observers per-

formed the same visual categorization task but no

feedback was provided.
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Specifically, this model offers a useful tool to disentangle

whether social influence is accompanied with a modulation of

perceptual processing (i.e., the uptake of sensory evidence is

affected), a bias at judgmental level (i.e., priori response prefer-

ence is shifted), or both.15,17We reason that long-lasting percep-

tual changes exerted by observing others’ choices might reflect

the internalization of social influence through modulating sen-

sory processes, whereas an outward sign of public compliance

with others’ views is more likely to be transient response

changes and easily fade away when social context is absent.

Furthermore, we seek to identify the critical factors that modu-

late perceptual decisions under social influence. Decisions are

often accompanied with a certain degree of confidence which

reflects an internal estimation of the information gathered from

the environment.20 Recent work has suggested that confidence,

as a metacognitive process of uncertainty monitoring, plays an

important role in collecting evidence for a choice, guiding subse-

quent actions, and exploring alternatives.21,22 On the other hand,

individuals usually exhibit consistent, context-independent dif-

ferences in their propensities to utilize social information.23 Pa-

tient studies have reported that children and adults with autism

spectrum disorder conform less to others than the neurotypical
2 iScience 28, 111716, February 21, 2025
group.24,25 Hence, we reason that the effect of social influence

might relate to an internal metacognitive process (i.e., confi-

dence) and individual traits (e.g., autistic-like tendency). In this

study, we measured participants’ choices and their confidence

before and after receiving social feedback for each trial during

training. This two-phase design allowed us to dynamically track

participant responses over time and characterize how personal

and social information was integrated into subsequent percep-

tual decisions. We further assessed individual differences in their

susceptibility to social information whenmaking decisions under

uncertainty, and explored whether it relates to personality traits.

RESULTS

Social feedback modulates perceptual decision-making
Three groups of observers (experiment 1–3) were trained to

make categorical judgments on visual stimuli that morphed be-

tween radial and concentric patterns (Figure 1A). To investigate

whether and how social contexts affect perceptual decision-

making, we designed a dyadic training paradigm in which pairs

of observers were recruited to perform this visual categorization

task simultaneously and each one was informed of their
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Figure 2. Social feedback shapes visual

categorization

(A) The proportion of responses in which ob-

servers indicated the Glass pattern as concentric

is plotted as a function of spiral angle from

experiment 1–3. Data are shown for the pretest

(dash lines) and the posttest (solid lines).

(B) Visual categorization boundaries indicated by

the subjective equality points (PSE) before and

after training. Each color corresponds to a unique

experiment. Individual data are plotted as gray

circles.

(C) The shift of categorization boundary (i.e.,

change of PSE) is shown separately across

experiment 1 to experiment 4. The small colored

circles and large open circles respectively repre-

sent individual data and the means of the

perceptual changes. The distribution of individual

data (shaded region) was plotted for each exper-

iment using the Raincloud plots package.26

Error bars show ±1 SEM. ***p < 0.001, n.s.:

nonsignificant.
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partner’s responses during training (Figure 1B). Unbeknownst to

the participants, the peers’ responses were simulated using

an algorithm based on an unbiased (45� spiral angle, experi-

ment 1) or shifted (60� spiral angle, experiment 2) categorization

boundary, referred to as unbiased and biased social feedback,

respectively (Figure 1C). This paradigm allowed us to conduct

training on one arbitrary category boundary and then test expe-

rience-dependent changes in perceptual sensitivity and catego-

rization boundary. An additional individual training group in

which observers were trained alone without any social interac-

tions was included as a baseline experiment (experiment 3).

All observers completed five training blocks (450 trials) which

lasted about 1.5 h. No error feedback was provided in these

experiments.

We tested observers’ ability to categorize global form patterns

as radial or concentric before and after training and plotted their

performance as a function of stimulus spiral angle (Figure 2A).

Our results showed that biased social feedback significantly

shifted the observers’ criteria for categorical judgments. A

repeated-measures ANOVA comparing categorization bound-

aries (50% point on the psychometric function, that is the point

of subjective equality, PSE) across tests (pre- and post-training

tests) and groups (experiments 1, 2, and 3) showed a significant

interaction of test and experimental group (F(2,59) = 30.19,

p < 0.001, h2p = 0.51). Before training, observers’ categorization

boundaries were not significantly different between experi-

mental groups (one-way ANOVA, F(2,59) = 0.38, p = 0.687,

h2p = 0.01) and matched closely the mean of the physical stim-

ulus space (45� spiral angle). After training, biased social feed-

back has significantly shifted the observers’ criteria for categori-

zation toward the 60� boundary (experiment 2: PSE at pretest vs.

posttest: 46.45 vs. 56.20, 95% confidence interval [CI] for the

mean difference = [7.82, 11.68], Cohen’s d = 2.30, t(20) =

10.53, p < 0.001), in contrast to no significant change on percep-

tual boundary observed for groups trained with unbiased social
feedback or trained alone (experiment 1: PSE at pretest vs. post-

test: 46.15 vs. 47.32, 95% CI for the mean difference = [-1.42,

3.78], Cohen’s d = 0.21, t(20) = 0.94, p = 0.356; experiment 3:

pretest vs. posttest: 47.08 vs. 45.72, 95% CI for the mean differ-

ence = [-3.40, 0.67], Cohen’s d =�0.31, t(19) =�1.40, p = 0.177,

Figure 2B). We also observed a gradual shift of perceptual

boundary over training blocks (Figure S1). However, comparing

the perceptual sensitivities (i.e., the slopes of psychometric func-

tions) before and after training across groups showed neither

significant main effects (Test: F(1,59) = 0.02, p = 0.883, h2p =

3.68 3 10�4; Group: F(2,59) = 2.57, p = 0.085, h2p = 0.08) nor

the interaction (F(2,59) = 1.13, p = 0.331, h2p = 0.04).

To further examine whether the shift in the observers’ catego-

rization boundary could bemaintained over time, seventeen par-

ticipants of experiment 2 were called back for an additional test

six weeks after training. Surprisingly, the change of PSE was re-

tained and did not significantly differ from that tested immedi-

ately after training (mean PSEs at pretest, posttest, and re-test

were 46.73, 56.24, and 55.78 respectively, ANOVA, F(2,32) =

31.46, p < 0.001, h2p = 0.66, paired-samples t test, 95% CI for

the difference of means between posttest and re-test = [-3.79,

2.87], Cohen’s d = �0.07, t(16) = �0.29, p = 0.773, Figure 2C),

suggesting social influence on perceptual decisions was sus-

tained for a prolonged time.

Considering the categorization criteria in our paradigmmay be

ambiguous to naive participants that they were easily altered by

social feedback, we ran an additional experiment to test whether

experienced participants with clear categorization boundaries

are similarly influenced by social feedback (experiment 4).

Another group of observers was first trained individually to cate-

gorize global form patterns for multiple days (1,800–3,600 trials

in total) and then underwent a dyadic training sessionwith biased

social feedback (30� or 60� spiral angle) following the same

procedure as in experiment 2. Intensive individual training asso-

ciated with trial-by-trial unbiased error feedback improved
iScience 28, 111716, February 21, 2025 3



A B Figure 3. Behavioral results in the revised

decisions and confidence during dyadic

training

(A) Boxplots illustrating the probability of choice

switching during the reviseddecisions are presented

as a function of social influence (agreement vs.

disagreement) and initial confidence (high vs. low).

(B) Confidence ratings for initial and revised choices

are separated by different revised decisions (i.e., to

stay or switch initial choices) when facing disagree-

ment. Data are averaged across participants in

experiment 1 and experiment 2 as no significant

group difference is observed. Individual data are

plotted and the color of the dots indicates the

experimental group (greendots for experiment 1; red

dots for experiment 2).

Data present sample distributions, along with the

quantiles and median scores for each condition.

***p < 0.001.
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observers’ perceptual sensitivity in categorical judgments,

which was confirmed by a significant increase in the slope

of the psychometric function after training (after vs. before,

0.18 vs. 0.12, 95% CI for the mean difference = [0.03, 0.09], Co-

hen’s d = 1.01, t(19) = 4.50, p < 0.001), and the categorization

boundaries (46.43 ± 2.43�) matched closely the mean of the

physical stimulus space. Interestingly, mere 90-min dyadic

training with biased social feedback resulted in a significant,

though relatively weak, shift in observers’ categorization criteria

toward the partners’ boundaries (mean difference = 5.55, 95%

CI for the mean difference = [2.78, 8.33], Cohen’s d = 0.94,

t(19) = 4.19, p < 0.001, Figure 2C), affirming an irresistible social

influence even in well-trained individuals.

Confidence and social feedback influence subsequent
behavioral responses
Decisions that we are making are accompanied with some de-

gree of confidence on whether the concurrent judgments are

correct. Recent work has suggested that confidence, as an inter-

nal metacognitive process of uncertainty monitoring, is crucial in

revising one’s decisions.21,22,27 In this study, we evaluated ob-

servers’ confidence in their perceptual choices over training. In

each trial, observers made perceptual judgments twice for the

same level of stimulus and each judgment was followed by a

graded confidence rating (Figure 1B). This two-phase procedure

allowed us to examine how individuals’ confidence associated

with social feedback influenced their subsequent perceptual de-

cision-making. We separated trials based on observers’ initial

confidence (high vs. low confidence compared to the mean

value) or social feedback (agreement vs. disagreement) and

test whether individual choices were changed in the revised de-

cision phase (Figure 3A). Our results demonstrated that ob-

servers were less likely to change their minds when holding

higher confidence in their initial choices or when receiving incon-

sistent responses from partners. A 3-way ANOVA with confi-

dence (high and low), social feedback (agreement and disagree-

ment), and group (experiments 1 and 2) as factors on the

probability of choice switching (Pswitch) showed significant

main effects of confidence (F(1,40) = 58.47, p < 0.001, h2p =

0.59) and social feedback (F (1,40) = 337.00, p < 0.001, h2p =
4 iScience 28, 111716, February 21, 2025
0.89). More importantly, there was a significant interaction be-

tween initial confidence and social feedback (F(1,40) = 22.22,

p < 0.001, h2p = 0.36). Post-hoc analyses revealed that inconsis-

tent responses from partners leaded to higher probability of

choice switching and this effect wasmore pronounced when ob-

servers showed lower confidence in their initial choices (high

confidence, disagreement vs. agreement, mean difference =

0.29, 95% CI for the mean difference = [0.23, 0.34], Cohen’s

d = 1.63, t(41) = 10.56, p < 0.001; low confidence, disagreement

vs. agreement, mean difference = 0.40, 95%CI for the mean dif-

ference = [0.36, 0.44], Cohen’s d = 3.27, t(41) = 21.22, p < 0.001),

indicating that confidence plays a critical role in the use of social

sources for perceptual decision-makings. The lack of a signifi-

cant three-way interaction (F(1,40) = 2.37, p = 0.131, h2p =

0.06) and the main effect of group (F(1,40) = 2.60, p = 0.115,

h2p = 0.06) suggested similar trends observed in both groups.

Comparing observers’ confidence rating scores between the

initial and revised decision phases across experimental groups

(experiments 1 and 2) revealed a significant boost in confidence

through revision (F(1,40) = 40.09, p < 0.001, h2p = 0.50). Notably,

this boost in confidence was observed even in the face of

disagreement (F(1,40) = 31.02, p < 0.001, h2p = 0.44). In partic-

ular, we compared the self-rated confidence for different revised

decisions (i.e., whether to follow the opinions of others and

switch the choices). Interestingly, there was a significant interac-

tion between revised choice (stay vs. switch) and decision phase

(F(1,40) = 73.93, p < 0.001, h2p = 0.65) in a three-way ANOVA

(revised choice 3 decision phase 3 group) (Figure 3B). Post-

hoc analyses revealed that when observers showed lower confi-

dence in their initial decisions, they tended to take their partners’

advice and switch choices, whereas they adhered to their initial

choices when holding higher confidence (initial confidence, stay

vs. switch, mean difference = 0.58, 95% CI for the mean differ-

ence = [0.44, 0.72], Cohen’s d = 1.29, t(41) = 8.34, p < 0.001).

Following partners’ opinions substantially boosted observers’

confidence, making them even more confident in these revisions

compared to sticking to their original choices (revised confi-

dence, stay vs. switch, mean difference = �0.26, 95% CI for

the mean difference = [-0.40, �0.13], Cohen’s d = �0.63,

t(41) = �4.08, p < 0.001). Taken together, our results
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Figure 4. Drift diffusion modeling results

(A) Illustration of how personal or/and social information may modulate perceptual decision-making within the DDM framework. The DDM can capture decision

bias through a shift in the starting point (z, upper panel) and/or through an alteration in the drift rate (v, lower panel) of evidence accumulation toward the different

decision thresholds (a).

(B) Posterior distributions of model parameters (starting point and drift rate) for the best-fitting model. The dependencies of the starting point (blue lines) and the

drift rate (orange lines) on social information (upper panel), and personal information (lower panel) in experiment 1 (lefthand) and experiment 2 (righthand) are

presented. More than 95% of the distribution was greater than 0, indicating significant positive effect on these parameters.

(C) Visualization of change of PSE from model simulations, values as a function of various dependencies of the drift rate (v, lefthand panel) and the starting point

(z, righthand panel) on personal (initial confidence, x axis) or social information (y axis). Hotter colors indicate greater perceptual changes.

(D) Negative correlations between perceptual change (i.e., change of PSE) and metacognitive sensitivity at both posttest and re-test (six weeks later). *p < 0.05,

***p < 0.001.
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demonstrate that individuals aremore susceptible to social influ-

ence when lacking confidence, and conforming to the opinions

of others significantly boosts their confidence in perceptual

decisions.

Drift-diffusion modeling reveals social influence leads
to changes in perceptual processing
When making a decision in the cluttered world imbued with un-

certainty, individualsmay not only count on the personal informa-

tion gathered from sampling the physical environment but also

utilize the social information provided by others to improve

decision accuracy. To further explore the underlying cognitive

process throughwhichpersonal information (i.e., observers’ con-

fidence level in their initial choices) and social information

(i.e., partner’s choices) are integrated into subsequent percep-

tual decision-making, we applied a DDM analysis to behavioral

responses during dyadic training in experiments 1 and 2. Note

that only the revised decisions were being modeled, as the ob-

servers’ choices and confidence ratings from the initial decision

stage before receiving any social feedback are considered repre-
sentative of individuals’ subjective independent judgments.16,22

According to the DDM, perceptual decision-making between

two alternatives can be described as a dynamic process in which

sensory evidence is accumulated over time until a decision

threshold is reached.18,28 In our study, we reasoned that individ-

ualsmay incorporate personal and social information by promot-

ing a biased evidence accumulation process toward the bound-

ary associated with their initial option or the option favored by

their partners. In particular, we considered two potential mecha-

nisms accounting for this biased process, that is, personal and/or

social informationmay shift thepriori responsepreference so that

less supportive evidence is needed (i.e., a responsebias) or affect

the uptake of sensory evidence (i.e., perceptual bias). Critically,

DDMcanbeused todisentangle these twoprocessesbydecom-

posing behavioral data (i.e., choices and RT distributions) into

two key parameters: starting point (z) for a prior response bias,

and drift rate (v) for speed of evidence accumulation (Figure 4A).

To this end, we tested 10 candidate models that embodied

these different predictions and were composed of various com-

binations of the two key model parameters varying with personal
iScience 28, 111716, February 21, 2025 5
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and social information (see details in STAR Methods). In the

baseline model (model 1), neither the starting point nor the drift

rate was affected by personal and social information, but the drift

rate was allowed to vary with the stimulus spiral angle. The re-

maining models differed to examine whether the starting point

or/and drift rate were affected by personal information (models

2–4), social information (models 5–7), or both (models 8–10).

Model fits were assessed using the deviance information crite-

rion (DIC).29,30 The best-fitting model is the full model (model

10, as indicated by the lowest DIC score) in experiments 1 and

2, incorporating dependencies of the starting point and the drift

rate on both personal and social information. We took several

steps to validate this best-fitting model (see details in model

analysis, Figures S2–S6). These model simulation analyses

affirmed that the full model well captured the key cognitive pro-

cesses involved in perceptual decision-making under social

influence.

We extracted the posterior distributions of the starting point

and the drift rate estimated by the full model to quantify the

extent to which personal and social information affected these

two parameters (Figure 4B). Our results demonstrated that per-

sonal information had significant positive effects on the drift rate

(experiment 1: p(vpersonal > 0) > 0.999, mean = 0.96, 95%credible

interval = 0.69–1.22; experiment 2: p(vpersonal > 0) > 0.999,

mean = 1.36, 95% credible interval = 1.02–1.72) and the starting

point (experiment 1: p(zpersonal > 0) = 0.990, mean = 0.33, 95%

credible interval = 0.05–0.61; experiment 2 showed a similar

but non-significant positive tendency: p(zpersonal > 0) = 0.792,

mean = 0.10, 95% credible interval = �0.16 – 0.35), suggesting

that individuals incorporated their personal information via start-

ing closer to the threshold of initially chosen option, and

higher confidence resulted in more pronounced biased sensory

evidence accumulation. Similarly, there were significant

positive effects of social information on the drift rate (experiment

1: p(vsocial > 0) > 0.999, mean = 0.33, 95% credible interval =

0.14–0.52; experiment 2: p(vsocial > 0) > 0.999, mean = 0.45,

95% credible interval = 0.31–0.59) and the starting point (exper-

iment 1: p(zsocial > 0) = 0.975, mean = 0.30, 95% credible inter-

val = �4.65 3 10�4 – 0.59; experiment 2: p(zsocial > 0) = 0.959,

mean = 0.14, 95% credible interval = �0.02 – 0.31). Taken

together, personal and social information influenced subsequent

perceptual decision-making in two ways: adjusting the initial

response criteria and inducing selective accumulation of sensory

evidence. A comparison of the estimated parameters showed

that the effect of either personal or social information on the drift

rate wasmore pronounced than that on the starting point (exper-

iment 1: p(vpersonal > zpersonal) = 0.999, p(vsocial > zsocial) = 0.568;

experiment 2: p(vpersonal > zpersonal) > 0.999, p(vsocial > zsocial) =

0.996), suggesting that the perceptual bias played amore impor-

tant role in integrating personal and social information into

perceptual decisions.

Moreover, the DDM allowed us to specify how individuals’

categorization boundaries were shaped by personal and social

information. We implemented the simulation by systematically

varying the four key parameters, vpersonal, vsocial, zpersonal, and

zsocial, which represented the influences exerted by personal

and social information on perceptual processing and response

preference, respectively. As shown in Figure 4C, the perceptual
6 iScience 28, 111716, February 21, 2025
change was larger when vsocial or zsocial was higher, and vpersonal
or zpersonal was lower. Consistent with our empirical data, the

simulation results implied that if observers felt less confident in

their decisions, a selective evidence accumulation process in

favor of others’ choices was promoted, resulting in a greater

perceptual change induced by social influence. Hence, we spec-

ulated that such confidence judgments, which reflect the ability

to recognize one’s own successful choices, may predict the

perceptual change exerted by social influence. Specifically, we

calculated the extent to which confidence discriminates be-

tween correct and incorrect responses, namely metacognitive

sensitivity,31 avoiding the overall level of confidence expressed

bias. As expected, in experiment 2, we found significant negative

correlations between metacognitive sensitivity and changes of

PSEs which were tested immediately after training (r(19) =

�0.55, p = 0.010) and even six weeks later (r(15) = �0.52,

p = 0.033) (Figure 4D). These results highlight that confidence

is a robust predictor of perceptual changes caused by social in-

fluence, implying that the metacognitive process guides individ-

uals to selectively assimilate the opinions of others into percep-

tual decision-making.

Individual differences in the integration of personal and
social information
We next investigated the individual differences in their suscepti-

bility to social influence. As the final responses expressed by

revised choices and confidence (i.e., belief updating) have

merged the personal information gathered during initial decision

phase and the social information gathered by observing part-

ners’ choices, we performed amultiple linear regression analysis

to quantify the contributions of these two information sources

at individual level. We extracted two regression coefficients,

bpersonal and bsocial, reflecting the extent to which individuals

were influenced by personal information and social information,

respectively. Results showed that both personal (experiment 1,

t(20) = 21.45, p < 0.001; experiment 2, t(20) = 18.06, p < 0.001)

and social information (experiment 1, t(20) = 15.92, p < 0.001;

experiment 2, t(20) = 17.82, p < 0.001) sources contributed to

revised confidence. Interestingly, the two coefficients were

negatively correlated (experiment 1, Pearson’s r(19) = �0.88,

p < 0.001; experiment 2, Pearson’s r(19) =�0.77, p < 0.001) (Fig-

ure 5A), which is in line with our previous findings that individuals

are more likely to be influenced by others when they are uncer-

tain about their own choices. Next, we computed a social sus-

ceptibility index (SSI) that indicated individual susceptibility to

social influence versus personal information by calculating the

difference between the two coefficients (bsocial�bpersonal) due

to the observed antagonistic contribution of personal and social

factors to belief updating. We then asked whether this individual

susceptibility to social influence is accounted for by the

response preference or perceptual processing. We extracted

the individual parameters estimated from the DDM model and

derived a perceptual bias index (vsocial�vpersonal) and a response

bias index (zsocial�zpersonal). We found that SSI was highly corre-

lated with perceptual bias index (Figure 5B, experiment 1, Pear-

son’s r(19) = 0.79, p < 0.001; experiment 2, Pearson’s r(19) =

0.78, p < 0.001) but not with response bias index (Figure 5C,

experiment 1, Pearson’s r(19) = 0.26, p = 0.251; experiment 2,
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Figure 5. Individual differences in integrating personal and social information and its correlations with autistic traits

(A) The influences of personal and social information on revised confidence, indicated by bpersonal and bsocial respectively, are negatively correlated.

(B and C) Correlating individual susceptibility to social influence with perceptual bias and response bias. The social susceptibility index is associated with

perceptual bias index but not response bias index.

(D and E) Correlating autistic traits with individual susceptibility to social influence and perceptual bias index. The social skill factor of the AQ is negatively

correlated with social susceptibility index and perceptual bias index. A lower AQ score in the social skill domain indicates better social proficiency.

(F) Results of mediation analysis. The mediation model included AQ (social skill domain of the AQ) as the independent variable, social susceptibility index as the

dependent variable, and perceptual bias index as the mediator. The influence of autistic tendency on social susceptibility was fully mediated by its perceptual

processing. Social susceptibility index: bsocial�bpersonal; Perceptual bias index: vsocial�vpersonal; response bias index: zsocial�zpersonal. Data are plotted across

participants in experiment 1 and experiment 2, and the color of dots indicates the experimental group.

*p < 0.05, ***p < 0.001, n.s.: nonsignificant.
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Pearson’s r(19) = �0.12, p = 0.597), indicating that integration of

personal and social information in belief updating essentially

stemmed from sensory evidence accumulation process rather

than response preference.

Finally, we explored whether individual susceptibility to social

influence relates to personality traits. We measured observers’

autistic traits using an adapted version of the autism-spectrum

quotient (AQ).32 Combining data across experiments 1 and 2,

we found that social skill domain of the AQ was negatively corre-

lated with SSI (Figure 5D, Pearson’s r(40) =�0.37, p = 0.015) and

perceptual bias index (Figure 5E, Pearson’s r(40) = �0.33, p =

0.030), that is, a lower AQ score (higher social proficiency) was

associated with a stronger social susceptibility and more selec-

tive sensory evidence accumulation toward others’ opinions. A

follow-upmediation analysis revealed that individual autistic ten-

dency indirectly affected social susceptibility via the perceptual

bias index (a3b = �0.25, SE = 0.11, p = 0.039, 95% CI =

[-0.45, �0.03]). Moreover, the influence of autistic tendency on

social susceptibility was fully mediated by its perceptual pro-

cessing (Figure 5F, from c = �0.37, p = 0.015 to c’ = �0.12,

p = 0.242). This relationship between personality traits and indi-

vidual social susceptibility was also confirmed when taking the

Big Five personality test33(Figure S7). The dimension of extraver-
sion was found to be significantly correlated with perceptual bias

index (Pearson’s r(40) = 0.34, p = 0.029) and marginally signifi-

cantly correlated with SSI (Pearson’s r(40) = 0.27, p = 0.081).

Taken together, these results suggest that individuals with higher

social proficiency (less autistic-like traits) are more susceptible

to social influence by promoting a selective sensory evidence

accumulation process toward the choices favored by others.

DISCUSSION

Initiated by Sherif34 and Asch’s studies,13 a key question in social

psychology is whether social influence can alter basic percep-

tual processes. In this study, we designed a dyadic training para-

digm and demonstrated that observing others’ choices can lead

to a persistent perceptual change (i.e., shift in visual categoriza-

tion boundary). We further sought to identify the critical factors

that modulate perceptual decisions under such interactive social

contexts. We showed that confidence has a great impact on so-

cial influence. Using a diffusion model approach, we character-

ized how individuals integrate social information with confidence

into the process of sensory evidence accumulation. In addition,

we quantified the individual differences in susceptibility to social

influence and linked it to personality traits (e.g., autistic-like
iScience 28, 111716, February 21, 2025 7
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tendency). This enables us to provide the following main ad-

vances in understanding the computational cognitive mecha-

nisms underlying social influence on perception.

Long-term effects of social influence on perceptual
decision-making
First, our study reveals a robust and long-lasting impact of social

influence on a basic perceptual task, complementary to the ex-

isting investigation on the long-term effects of social influence

focusing on higher-level cognitive processes such as prefer-

ences and attitudes.3 For instance, it has been reported that so-

cial conformity in facial attractiveness judgments lasts for up to

3 days, but not for longer than 7 days. Here, we showed that par-

ticipants’ perceptual boundaries are significantly shifted after a

short-term dyadic training, highlighting individuals’ sensitivity

to the opinions of others.6,7,35,36 Notably, the observed percep-

tual changes are still evident in the absence of social context (i.e.,

test phases) and persist for an extended period of up to six

weeks, implying that social influence can be internalized through

genuinely altering perception more than merely a temporary

compliance with others’ opinions. Interestingly, such social influ-

ences are observed even in individuals who have been well-

trained for multiple days with trial-by-trial error feedback. Mere

90-min social learning with biased feedback significantly alters

their original perceptual boundaries, indicating a robust effect

of social influence in shaping our perceptual experience which

also occurs in familiar stimuli. However, there was no significant

improvement in perceptual sensitivity observed in our study,

which suggests that short-term dyadic training without error

feedbackmay not be sufficient to facilitate perceptual sensitivity,

given that the amount of training, sleep-related memory consol-

idation and informative feedback are known to play significant

roles in perceptual learning.37–40

Furthermore, our modeling results confirm that during social

learning participants boost the accumulation of sensory evi-

dence toward partners’ choices, rather than merely shifting

response criteria. In line with previous studies,6,7,14 our results

confirm a perceptual bias caused by social influence. Neuroi-

maging studies have provided evidence that social influence

modulates early sensory processing, such as the visual P1 and

N1 components.41,42 Kelly and O’Connell43 have found that the

buildup of sensory evidence leads to an increase in the lateral-

ized readiness potential (LRP), which is associated with a faster

drift rate favoring the majority response.7 Edelson et al.44 have

shown that social influence could even extend to long-term

memory by modifying the neural representation of memory.

Taken together, short-term dyadic training exerts a robust and

enduring influence on perceptual decision-making by internal-

izing social influence, with sensory evidence accumulation pro-

cesses genuinely altered.

Why do people conform? From a traditional viewpoint, aligning

with others’ opinions could be motivated informationally to

improve decision accuracy or normatively to affiliate with others

for gaining acceptance or maintaining positive self-esteem,

referred to as informational and normative influences,2,45

respectively. The current study focuses more on the mecha-

nisms of informational influence, as it was designed to minimize

group pressure through the use of a single gender-matched
8 iScience 28, 111716, February 21, 2025
advisor. However, there still exist potential effects of normative

influence, as the social context we have introduced in the current

design (i.e., interactive training with a partner) may involve a pro-

cess of social comparison (individuals compare themselves to

other people)40 or reciprocity (participants reciprocate influence

with their partner by gravitating toward the susceptible partner’s

opinion)46,47 which is going beyond information aggregation for

decision improvement. To provide confirmatory evidence for

the contribution of normative influence, we ran an additional con-

trol experiment during which the test and training protocols

matched experiment 2, except that the observers were trained

individually but provided with peer-absent social feedback (Fig-

ure 6). This manipulation ensures the informed accuracies well

controlled across experiments, and allows us to probe the po-

tential normative influence on perceptual decisions through the

environmental settings of online social interaction. Our results

show that the biased social feedback, in spite of the absence

of a partner, still significantly shifted the observers’ criteria for

categorization (PSE at pretest vs. posttest: 45.95 vs. 50.82,

95% CI for the mean difference = [2.44, 7.29], Cohen’s d =

0.94, t (19) = 4.20, p < 0.001). Critically, the observed perceptual

change in the control experiment was significantly smaller than

that in experiment 2 (DPSE: experiment 2 vs. control experiment,

9.75 vs. 4.87, 95% CI for the mean difference = [1.90, 7.87], Co-

hen’s d = 1.03, t(39) = 3.31, p = 0.002). These results indicate that

the observed social conformity is not just a result of informational

influence in terms of increasing decision accuracy but also re-

flects normative influence which might relate to a process of so-

cial comparison or reciprocity. In particular, the social context

with real-time human interactions exerts a greater social

influence.

Confidence controls social influence integration into
perceptual decision-making
Second, our study highlights the critical role of confidence in the

integration of social influence into perceptual decision-making. It

is worth noting that the observed shift of perceptual boundary af-

ter dyadic training with biased social feedback (i.e., change of

PSE in experiment 2) was 9.8 ± 0.9� (M ± SE), which was signif-

icantly smaller than an expected PSE shift of 15� induced by

classical non-social feedback (i.e., error feedback indicating

whether the choices were correct or not) (t(20) = �5.67,

p < 0.001) according to reinforcement learning theory.48–50 Our

results suggest that although people are inevitably influenced

by the opinions of others, they are not simply following the

herd; instead, there exists a processing mechanism which inte-

grates the personal information gathered from sampling the

physical inputs, and social information provided by others. To

investigate further, our paradigm is unique in measuring self-

rated confidence in a two-phase design, allowing us to dynami-

cally monitor how this internal metacognitive process affects

subsequent perceptual decision-makings, and interacts with so-

cial influence. Our behavioral and modeling results demonstrate

that when observers felt less confident in their decisions, they

were more likely to conform to the peers’ opinions, and a selec-

tive sensory evidence accumulation process in favor of others’

choices was promoted. This cognitive mechanism aligns with

recent work, which has demonstrated that high confidence alters
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Figure 6. Results of control experiment

(A) Experimental design of control experiment. The test and training protocols matched experiment 2, except that the observers were trained individually and

provided with the categorical judgments about the same stimulus from an alleged peer advisor.

(B) The proportion of responses in which observers indicated the Glass pattern as concentric is plotted as a function of spiral angle before and after training. Data

are shown for the pretest (dash lines) and the posttest (solid lines). Insets indicate the corresponding PSEs for each testing phase.

(C) Comparison of the shift of categorization boundary (i.e., change of PSE) between the control experiment and experiment 2.

Error bars show ±1 SEM.**p < 0.01, ***p < 0.001.
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the way the brain accumulates new sensory information by over-

weighting evidence consistent with their beliefs while discount-

ing evidence incompatible with them.21,51 Importantly, tracking

individual process of confidence judgments over training (i.e.,

metacognitive sensitivity) was a robust predictor of perceptual

changes (i.e., shift of categorization boundary) at post-training

tests and re-tests even six weeks later. These results comply

with a ‘‘copy when uncertain’’ social learning strategy which

can account for situations wherein individually acquired informa-

tion is imprecise.52,53 For example, individuals seek less social

information and are keen to persuade others when they are

confident in their choices.16 By contrast, they ask for social

advice more often when unsure.54 This pattern is similar to a

Bayesian interpretation of multisensory integration, which pro-

poses that agents weigh and combine different sensory modal-

ities according to their reliability.55 To sum up, we argue that a

confidence-based learning principle could be a more general-

ized rule for information integration, which also applies to social

contexts. Specifically, a confidence-regulated sensory evidence

accumulation process controls the integration of social influence

into perceptual decision-making.

Note that confidence is not an absolute measure. Rather, it

may dynamically interact with social contexts. For example,

recent work has shown that individuals adjust their confidence

relying on others’ choice accuracy.56 In collective decision-mak-

ing, accurate communication of confidence can facilitate perfor-

mance,8 while poor metacognitive ability may lead to biased

evidence accumulation and yield worse decisions.22,57,58 Simi-

larly, we observe a modulation of confidence by social influence

in our study. Specifically, conforming to the opinions of others

significantly boosts the confidence in decisions. However, it re-

mains debated in this field what information is actually refer-

enced to in metacognition for guiding behavior.21 Our results

provide some interesting observations regarding this issue. We

show that experienced participants are less influenced by

others’ opinions. In addition, with informed accuracies well

controlled, social contexts involving real-time human interac-
tions exert a greater social influence. These findings suggest

that there might exist multi-level processes of metacognition un-

der social influence, more than merely monitoring the accuracy

of a decision. Future work might adopt delicate design and

modeling approach to disentangle these processes.

Individual differences in social susceptibility and its
correlations with personality traits
Finally, we characterize the individual differences in the extent to

which they count on social information when making perceptual

decisions. Results show that the individual variation in social

susceptibility (i.e., SSI) relates to the bias in sensory evidence

accumulation process rather than response preference, confirm-

ing again that social influence is associated with the changes in

perceptual processing. More importantly, our study provides ev-

idence for the linkage between personality traits and individuals’

susceptibility to social influence. Previous research has shown

that children with autism are less likely to conform to misleading

advice compared to typically developing children.24 Drift-diffu-

sionmodeling has suggested that such social influence in neuro-

typical children is due to changes in sensory processing, but this

does not emerge in autistic children.6 Here we extend these find-

ings in autistic patients to healthy adults. Our results discover

that individuals with higher social proficiency (e.g., lower AQ

scores in social skill subscale, higher extraversion of the Big

Five personality traits) are more susceptible to social influence

by driving a perceptual bias toward social information. It is

slightly different from what has been reported in a social confor-

mity study conducted in children,24 which underlines the autistic

trait of attention to detail as the critical predictor of conformity.

One possible explanation for this discrepancy could be result

of the developmental differences in the social brain.59 The devel-

opment andmaturation of social cognitive abilities are thought of

as more sophisticated compared to basic perceptual functions.

A recent study has described a developmental trajectory of

increasing social influence integration in neurotypical children,

with a prominent effect emerging around early adolescence.6 It
iScience 28, 111716, February 21, 2025 9
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is possible that children focus more on the precise perception of

objects while being less sensitive to top-down influence of social

information. As the social brain develops, social influence may

work through a different mechanism linking more to individual

social proficiency in adults.

In sum, combining behavioral methods with computational

modeling across a series of parallel experiments, we have devel-

oped a comprehensive understanding of how individuals flexibly

utilize different information sources when making decisions un-

der interactive social contexts. We have demonstrated that so-

cial influence engenders prolonged perceptual changes by

altering the process of sensory evidence accumulation, and

highlight the critical roles of confidence and personality traits

(e.g., autistic traits) in this modulation effect. These findings offer

compelling evidence that our perceptual experiences are deeply

influenced by social factors, and shed new light on the possible

biopsychosocial mechanisms of social influence on perceptual

experience.

Limitations of the study
This work brings to light several topics that warrant further inves-

tigation. First, the current study focuses on delineating the level

of processing at which personal and social information were

incorporated into decision process (e.g., perceptual bias vs.

response bias). We lack a detailed understanding of the dy-

namics of the decision-making process in social contexts. It

would be valuable to develop a mechanistic model of social de-

cision-making, accurately capturing how confidence and social

information dynamically interact and change during the social

learning process. Second, the inferences of cognitive process

of social contexts on perceptual decisions are made on a basis

of behavioral data, lacking direct biological evidence. Future

work may explore the neural substrates that mediate the integra-

tion of personal and social information into perceptual decisions.

In particular, this social learning mechanism could be associated

with an interaction of multiple brain systems involved in percep-

tual decision-making (e.g., visual areas and lateral intraparietal

area), social cognition (e.g., superior temporal sulcus and tem-

poroparietal junction), and metacognition (e.g., dorsal anterior

cingulate cortex and prefrontal cortex). It will help uncover the

neurocomputational basis underlying how individuals flexibly uti-

lize different information sources to construct adaptable repre-

sentations of the world and guide adaptive behaviors.
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PROCESS (v 3.4.1) Hayes61 http://www.processmacro.org/

Jamovi (v 2.3.21.0 ) Sxahin et al.62 https://www.jamovi.org/

Analytic code This paper https://doi.org/10.57760/sciencedb.psych.00170
Experimental model and study participant details
A total of 104 college students took part in this study and theywere randomly allocated into different experimental groups. One partic-

ipant was excluded in Experiment 1 due to technical issues, and another participant in Experiment 2 dropped out due to a scheduling

conflict. The final sample consisted of 102 young adults (42 males and 60 females, mean age = 23.0 ± 2.6 years) who completed the

experiments. The sample size for each experiment was as follows: Experiment 1: n=21, Experiment 2: n= 21, Experiment 3: n=20,

Experiment 4: n=20, and control experiment: n=20. The sample size was determined based on a prior power analysis (matched-pairs

t-test, two-tailed) using G*Power 3.1.63 Considering there was no previous study exactly matching the current experimental design,

we therefore chose a medium effect (Cohen’s d = 0.70) with alpha at 0.05 and power of 80%. The calculation revealed that a sample

size of at least 19 observers, we further increased the sample size to �20 in each group. All participants were of Asian descent.

Ancestry was not collected, and the authors do not expect this detail to have potential impact on the results reported here. All

participants were naive to the aim of the study, had a normal or corrected-to-normal vision, and gave written informed consent in

accordance with procedures approved by the institutional review board of the Institute of Psychology, Chinese Academy of Sciences

(Protocol Number: H17029).

METHOD DETAILS

Stimuli and task
Observers were presentedwith Glass patterns, generated using previously describedmethods.48,49 In particular, stimuli consisted of

white dot pairs (dipoles) displayed within a square aperture (size = 7.7 � 3 7.7 �) against a black background. The size of each dot was

2.33 2.3 arc min2 and the dot density was 3%with the Glass shift (i.e., the distance between two dots in a dipole) of 16.2 arc min. To

generated patterns, intermediate between radial and concentric, dipole angles were parametrically varied from 0� (radial pattern) to
90� (concentric pattern) (Figure 1A). Each stimulus comprised signal dpoles that were aligned according to the specified spiral angle,

and noise dipoles for which the spiral angle was randomly selected. Observers were presented with 60% signal Glass patterns (spiral

angles = 0�, 20�, 30�, 40�, 45�, 50�, 60�, 70�, and 90�) and performed a categorization task indicatingwhether the viewed stimuluswas

radial or concentric. They were requested to respond as quickly and accurately as possible. The presentation of clockwise and coun-

terclockwise patterns was randomized across participants. A new pattern was generated for each trial, resulting in local jittering in

stimulus position. Experiments were controlled using MATLAB (The MathWorks, Natick, MA) and the Psychophysics toolbox 3.60

Stimuli were presented on a 23-inch LCD monitor (192031080 pixels, 60 Hz frame rate) at a distance of 67 cm.

Experiment 1
We recruited observers in pairs (gender-matched), and they arrived at the laboratory simultaneously. The two observers met briefly

and had their portrait photos taken by the experimenter. They were arranged to enter two adjacent laboratories. Experiment 1

included three stages: pretest, training, and posttest. We developed a dyadic training paradigm in which pairs of observers were

asked to perform the visual categorization task simultaneously and each onewas informed of his partner’s responses during training.

Unbeknownst to them, the peers’ responses were simulated using a computer algorithm. Pretest and posttest took place immedi-

ately before and after training. All participants were tested singly during test stages. Before the formal experiment, observers were

familiarized with the stimuli and task in a short practice session during which they were shown 100% signal Glass patterns and were

asked to categorize the stimuli as either radial or concentric patterns.
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During the training stage, each trial consisted of two phases: an initial decision phase and a revised decision phase (Figure 1B).

A red central fixation lasting 1000 ms indicated the start of a trial. The initial decision phase started with a 500 ms black fixation,

after which a 300 ms Glass pattern stimulus (60% signal) was presented. Observers were asked to make a two-alternative forced

choice (2AFC) to judge whether the stimulus was radial or concentric. They were then required to report their confidence in

this choice on a numerical scale from 1 (low confidence) to 7 (high confidence). Afterwards, observers were informed of their part-

ner’s choice about the same stimulus; both observers’ and the alleged partners’ choices were displayed underneath their corre-

sponding portraits for 1500 ms. It was worth mentioning that the partners’ choices were actually generated by a psychometric

function (Slope = 0.2, PSE = 45 deg). In the subsequent revision phase, the procedure followed the same timeline as the initial

decision phase. Observers had the opportunity to revise their decision and confidence rating after viewing a second Glass pattern

stimulus with the same spiral angle as the stimulus in the initial decision phase. Note that prior to training, the observers had been

informed that the stimuli had exactly the same spiral angle (though different appearance) at both decision phases for the same

trial. The training stage lasted approximately 1.5 hours and consisted of 5 blocks. Each block comprised 90 trials, with 10 trials

for each spiral angle.

Before and after the training stage, we tested observers’ ability to categorize global form patterns. For each trial, observers were

presented with a Glass pattern stimulus (60% signal) for 300 ms and then made a categorical judgment (radial or concentric). Each

test consisted of 180 trials, with 20 trials for each of the nine spiral angles. No any feedback was provided during test stages.

Experiment 2
Experiment 2 followed the same design and procedure as in Experiment 1, except that the PSE parameter of the psychometric func-

tion which simulated the partner’s choices was adjusted to 60�, referring to a biased category boundary. To examine whether the

observed changes in categorical boundary after short-term dyadic training wasmaintained over time, seventeen observers of Exper-

iment 2 were called back for an additional re-test (180 trials) six weeks after dyadic training (spaced by 45.4 ± 8.5 days on average).

Experiment 3
Experiment 3 tested whether observers’ perceptual sensitivity and categorization boundary were altered during individual training.

During the training stage, observers performed the categorization task similar to Experiment 1, except that there was no any feed-

back provided. That is, for each trial, observers categorized the global form pattern of the same spiral angle twice (initial and revised

decisions) but did not receive any social feedback. The test stages were identical to Experiment 1.

Experiment 4
Experiment 4 explored whether experienced observers with less ambiguous categorization boundaries are still influenced by biased

social feedback. Observers underwent five stages over multiple days, that is a pre-training test, individual training, an intermediate

test, dyadic training, and a post-training test. After a brief pre-training test, observers were trained individually for a minimum of two

and a maximum of four sessions conducted on consecutive days (1800-3600 trials in total) to improve their perceptual sensitivity in

this visual categorization task. For each trial, the stimulus was presented for 300ms and observers were asked to decide whether the

viewed stimulus was radial or concentric. If they made an incorrect choice, audio error feedback was provided. Each training session

comprised five blocks with 180 trials per block. The last three stages were conducted on the last day and the procedure matched to

Experiment 2. Following a similar training protocol, observers were trained in pairs with biased social feedback using an algorithm

based on a shifted categorization boundary. For a better control, the simulated biased categorization boundary was set in opposite

directions, either 60� or 30� in this experiment. Observers were randomly assigned to the 60� boundary group or to the 30� boundary
group.

Control experiment
To examine whether the observed behavioral conformity to the opinions of others in this social context (interactive training with a

partner) was just a result of informational influence in terms of increasing decision accuracy, we ran an additional control experiment

(Figure 6). The procedure including the presentation of stimuli and feedback matched Experiment 2, except that the observers were

trained individually but provided with peer-absent social feedback. Observers were told that during training they would see the opin-

ions of a gender-matched peer advisor about the same stimulus, and this advisor was randomly selected from the participants who

had performed this task before. In reality, each observer was coupled with a computer algorithm just like Experiment 2. This manip-

ulation ensured the informed accuracies well controlled across experiments, and allowed us to probe the normative influence under

the social context of real-time interacting with human on perceptual decision-making going beyond information aggregation for de-

cision improvement.

Questionnaire
Quantifying individual traits

Before the formal experiment, individual traits were assessed for each observer using the adapted version of the Autism-Spectrum

Quotient (AQ)32 and the Chinese Big Five Personality Inventory brief version (CBF-PI-B).33
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Debriefing

After finishing the posttest following dyadic training, observers in Experiments 1, 2, and 4were required to complete a debriefing form

that assessed the appraisals of their own and partner’s performance. Most observers reported that their performance was compa-

rable to that of their partners. All observers stated that they believed they were working with another human observer in the neigh-

boring room.

QUANTIFICATION AND STATISTICAL ANALYSIS

Psychometric functions
We calculated the proportion of concentric responses to stimulus spiral angle and fitted them with a Boltzmann sigmoid function:

fðxÞ = 1=ð1 + exp ð� a 3 ðx � cÞÞÞ. The spiral angle corresponding to a probability of 50% point on the psychometric function

is the perceptual boundary (c) or the point of subjective equality (PSE). A PSE of 45� means consistency between the perceptual

and physical boundary of the stimulus. The slope (a) of the fitted sigmoid function is an index of one’s perceptual sensitivity in the

global form patterns discrimination task.

Hierarchical drift-diffusion model
Drift diffusion model fitting was implemented in Python 3 using the hierarchical drift-diffusion model (HDDM) toolbox.29 In the hier-

archical DDM, subject parameters were drawn from a group-level distribution, and the posterior distribution of each parameter at

both subject and group levels was simultaneously estimated using Markov-Chain Monte-Carlo methods. The model fitting was per-

formed using stimulus coding such that decision boundaries corresponded to those for radial and concentric pattern categorizations.

In the DDM framework, choice bias can be modeled in two ways: first, the starting point can be biased towards the preferred choice,

representing a response bias; alternatively, the drift rate can be altered to induce a bias in the evidence accumulation processing,

showing selective sensory information uptake (i.e., perceptual bias). Therefore, we assumed that social information (partner’s

choices; concentric pattern, -1; radial pattern, 1), and personal information (initial confidence signed with their categorization;

concentric, negative; radial, positive; parametrically ranging from -1 to 1) would modulate the starting point and drift rate parameters.

As stimulus uncertainty particularly affects the drift rate parameter,19 we also included dependency of the drift rate on stimulus un-

certainty (0 to 90�, parametrically ranging from 1 to -1). Finally, to investigate how personal or/and social information may modulate

the starting point and drift-rate parameters, we used regression analysis and compared 10 DDMs with different parameter con-

straints (see below). Drift rate varied with stimulus uncertainty in all model.

Model 1: No effect of social and personal information allowed on the starting point and drift rate parameters (baseline model).

Model 2: Starting point, z, only depended on personal information.

Model 3: Drift rate, v, only depended on personal information.

Model 4: Starting point and drift rate depended on personal information.

Model 5: Starting point, z, only depended on social information.

Model 6: Drift rate, v, only depended on social information.

Model 7: Starting point and drift rate depended on social information.

Model 8: Starting point, z, depended on both personal and social information.

Model 9: Drift rate, v, depended on both personal and social information.

Model 10: Starting point and drift rate depended on both personal and social information (full model).

As we focused on how confidence and social information modulate subsequent perceptual decisions, the DDM analysis was only

applied to the revised decisions during dyadic training in Experiments 1 and 2 following a similar approach as in recent work.22 Ob-

servers’ confidence ratings on their initial decisions, which closely track the precision and reliability of sensory evidence accumula-

tion,64,65 are considered representative of observers’ subjective independent judgments (i.e. personal information) before receiving

any social feedback. All trials with RTs greater than 3.5 s were excluded before model fitting (across all experiments, 152 trials

(0.54%) were excluded, with a mean response duration of 6.4 s) and the outlier probability was set to 5%.29 Both group and sub-

ject-level parameters (starting point, drift rate, decision threshold, and non-decision time) were estimated in model fitting. Model

fits were assessed by comparing Deviance Information Criterion (DIC) values which had a degree penalty for model complexity.

All DDMs were estimated with MCMC method (50,000 samples; burn-in = 10,000; thinning = 10).

Model analysis
To better understand the cognitive mechanisms how personal and social information modulates perceptual decision-making, we

tested a series of candidate models within the DDM framework and demonstrated that the best-fitting model is the full model which

incorporates dependencies of the starting point and the drift rate on both personal and social information. We took several steps to

validate this best-fitting model (see details below). First, this full model provided a good fit to the behavioral data (i.e., RT distributions

and perceptual choices) at both group and individual levels (Figures S2–S4).We also tested the validity of thismodel with a parameter

recovery analysis to ensure that the key model parameters described individual differences and were interpretable, rather than an

artifact of the parameter optimization procedure (Figure S5). In addition, a cross-validation analysis was performed, wherein datasets

with biased and unbiased social feedbackwere generated using parameters from Experiment 1 (trained with unbiased feedback) and
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Experiment 2 (trained with biased feedback), respectively. These simulated results successfully reproduced the behavioral patterns

of perceived categorization boundaries varied with the partners’ perceptual boundaries (Figure S6).

Posterior predictive checks

Because a superior relative model fit does not necessarily mean that the winning model captures key aspects of the real data, we

additionally performed posterior predictive checks. To this end, we generated 2000 full datasets from the best-fitting model, based

on the posterior distribution of the parameters. To compare these simulated data to the observed data, we averaged over all simu-

lations to obtain the average reaction time and probability of switching in the revised decision, separately for the different trial types

(high confidence and agreement, low confidence and agreement, high confidence and disagreement, low confidence, and disagree-

ment; Figures S2C–S2F). Furthermore, to visualize how models accounted for the overall observed RT distributions, the simulated

datasets were smoothed via non-parametric density estimation and overlaid on the observed RT distributions for each trial type

(Figures S2D and S2F). To visualize how the model fits deviated from the data when the starting point or drift rate term was indepen-

dent of personal and social information, we also simulatedmodel predictions from the fits of other model families (Figure S3). We also

assessed how well the model accounts for the RT distributions at the subject level. For each observer, we overlay the distribution of

simulated reaction times with the true reaction time distributions, separately for radial and concentric responses (Figure S4).

Parameter recovery analyses

To verify that the effect of personal and social information on drift rate and starting point reflected true individual differences in

perceptual decisions, as opposed to an artifact of the parameter optimization procedure, we checked the capacity of recovering

the correct parameters using simulated datasets.We generated ten datasets, generating parameters based on the subject-level pos-

terior distributions, and re-fit these datasets with the generating model using the same methods as outlined above. The recovery of

subject-level parameters was examined by plotting the correlations between generating and estimated parameters (Figure S5).

Model simulations

To validate that our winning model (model 10) could effectively capture behavioral patterns of Experiments 1 and 2, we used model

simulation to cross-validate these inconsistent results from these two experiments. The differences in behavioral results between

Experiment 1 and Experiment 2 were mainly due to differences in the PSE of the simulated partners. Therefore, we generated

2000 full datasets, each dataset was generated with parameter values sampled from the posterior distribution, but changed the part-

ners’ perceptual boundary (45� or 60� spiral angle) to predict how individuals’ PSEs vary with partners’ perceptual boundary. To

compare the simulations to real data in Experiments 1 and 2, we averaged over the simulations to obtain concentric responses at

each spiral angle and plotted psychometric curves (Figure S6).

To examine whether individuals’ decision criteria would vary with their confidence and sensitivity to social information when inter-

acting with a partner with categorization bias (60� spiral angle). We created two 2-dimensional parameter grids, each for starting point

and drift rate. Each parameter grid contains the average effect of personal (range from 0.5 to 2, in increments of 0.15) and social in-

formation (range from 0 to 0.8, in increments of 0.08) on these parameters. The ranges of these parameters were derived from the

posterior distribution of the winning model. We generated 10,000 trials at each spiral angle at each combination of parameters. The

simulated responses were averaged to obtain the proportion of concentric responses at each spiral angle, and the change of PSE

was calculated for each parameter combination.

Regression analysis
Metacognitive sensitivity

We quantified the metacognitive sensitivity in each observer using trial-by-trial linear regression following previous methods.31 Spe-

cifically, we used accuracy (correct responses, 0; incorrect responses, 1; all responses at the physical boundary (45�) were encoded

as 0.5) to predict confidence scores, in which the coefficient of accuracy, that is, metacognitive sensitivity represented the extent to

which confidence discriminates between correct and incorrect trials.

Social susceptibility index

We quantified the contributions of social information and personal information to revised confidence using trial-by-trial multiple linear

regression, in which we predicted the z-scored observer’s signed revised confidence (concentric, negative; radial, positive) using the

z-scored observer’s signed initial confidence and the partner’s choice (radial, 0.5; concentric, -0.5). Further, we calculated the dif-

ference between these two coefficients (bsocial – bpersonal) tomeasure a social susceptibility index (SSI). The SSI represents the relative

extent of the impact of social information on revised confidence compared to personal information. We extracted the individual pa-

rameters estimated from the DDMmodel and analogously calculated the difference between vsocial and vpersonal or zsocial and zpersonal,

indicating the perceptual or response bias index in perceptual decision-making.

Mediation analysis
We conducted a mediation analysis using the PROCESS61 in SPSS version 26 (IBM Corp., Armonk, NY), with individual autistic ten-

dency as the independent variable, perceptual bias index (vsocial - vpersonal) as the mediator, and the SSI as the dependent variable.

We performed a bias-corrected bootstrap estimation analysis with 5000 samples to calculate the mediation effect. The analysis

yielded 95% confidence intervals for the indirect effects (a3b). Statistical significance was set at p < 0.05 when the 95% CIs did

not include zero.
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