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Abstract Perceiving biological motion (BM) is crucial for human survival and social interaction. 
Many studies have reported impaired BM perception in autism spectrum disorder, which is charac-
terised by deficits in social interaction. Children with attention deficit hyperactivity disorder (ADHD) 
often exhibit similar difficulties in social interaction. However, few studies have investigated BM 
perception in children with ADHD. Here, we compared differences in the ability to process local 
kinematic and global configurational cues, two fundamental abilities of BM perception, between 
typically developing and ADHD children. We further investigated the relationship between BM 
perception and social interaction skills measured using the Social Responsiveness Scale and exam-
ined the contributions of latent factors (e.g. sex, age, attention, and intelligence) to BM perception. 
The results revealed that children with ADHD exhibited atypical BM perception. Local and global 
BM processing showed distinct features. Local BM processing ability was related to social interac-
tion skills, whereas global BM processing ability significantly improved with age. Critically, general 
BM perception (i.e. both local and global BM processing) may be affected by sustained attentional 
ability in children with ADHD. This relationship was primarily mediated by reasoning intelligence. 
These findings elucidate atypical BM perception in ADHD and the latent factors related to BM 
perception. Moreover, this study provides new evidence that BM perception is a hallmark of social 
cognition and advances our understanding of the potential roles of local and global processing in 
BM perception and social cognitive disorders.

eLife assessment
The authors use point light displays to measure biological motion (BM) perception in children 
(mean = 9 years) with and without ADHD, and relate it to IQ, social responsiveness scale (SRS) 
scores and age. They report that children with ADHD were worse at all three BM tasks, but that 
those tasks loading more heavily on local processing relate to social interaction skills and those 
loading on global processing relate to age. There are still some elements of the results that need 
clarification with future work, but nevertheless, the important and solid findings extend our limited 
knowledge of BM perception in ADHD, as well as biological motion processing mechanisms in 
general.
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Introduction
ADHD is a common developmental disorder with a prevalence ranging from 2 to 7% in children and 
adolescents, averaging approximately 5% (Sayal et  al., 2018). In addition to the well-established 
core symptoms of ADHD (including the inability to sustain attention, hyperactivity, and impulsivity), 
some characteristics of autism spectrum disorder (ASD), such as dysfunction in social communication 
and social interaction, have also been frequently observed in children with ADHD (Grzadzinski et al., 
2011; Mulligan et al., 2009; Reiersen et al., 2007). Nevertheless, experimental studies focusing on 
social cognition in children with ADHD are limited. Some studies have reported poor performance 
on social cognition tasks. Among these, impaired theory of mind (ToM) and emotion recognition are 
the most frequently reported (Bora and Pantelis, 2016; Nejati, 2022; Uekermann et al., 2010). It 
is difficult for children with ADHD to recognize the emotions and intentions of others. However, our 
understanding of other social cognitive processes in ADHD remains limited. Further exploration of a 
diverse range of social cognitions (e.g. biological motion perception) can provide a fresh perspective 
on the impaired social function observed in ADHD. Moreover, recent studies have indicated that social 
cognition in ADHD may vary depending on different factors at the cognitive, pathological, or devel-
opmental levels, such as general cognitive impairment (Bora and Pantelis, 2016), symptom severity 
(McKay et  al., 2023), or age (Bora and Pantelis, 2016). Nevertheless, understanding how these 
factors relate to social cognitive dysfunction in ADHD is still in its infancy. Bridging this gap is crucial as 
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Figure 1. Schematic representation of biological motion (BM) and scrambled BM sequence. Intact walker contains information of local kinematics and 
global configuration. Local kinematics refers to the motion tracks of each critical joint illustrated by the chromatic dot. Global configuration is composed 
of the relative locations of each joint. In the scrambled BM sequence, global configuration cues have been removed, but local kinematics have been 
retained. (Figure reconstructed from Wang et al., 2018).
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it can help depict the developmental trajectory of social cognition and identify effective interventions 
for impaired social interaction in individuals with ADHD.

BM, which refers to the movement of a living creature, conveys a wealth of information beyond 
bodily movements (Dittrich, 1993), such as intention (Pavlova, 2012), emotion (Clarke et al., 2005), 
sex (Kozlowski and Cutting, 1977), and identity (Jokisch et al., 2006; Loula et al., 2005). The advent 
of point-light display (PLD) technology, which is used to depict human motions, (Johansson, 1973) 
allows researchers to separate biological motion from other characteristics such as shape and colour. 
Considering its seminal impact on cognitive, developmental, and clinical neuroscience, BM percep-
tion has drawn significant attention from scientists. Some researchers have attempted to deconstruct 
BM processing into more specific components. Our study concentrated on two fundamental abilities 
involved in processing BM cues (Figure 1): the ability to process local BM cues derived from major 
joint motion tracks, and the ability to process global BM cues of human configuration. Previous studies 
revealed differences between local and global BM perception. Separate neural signals for these abil-
ities imply two independent BM processing stages (Duarte et al., 2022; Jastorff and Orban, 2009; 
Vangeneugden et al., 2014). Local BM cues not only help identify locomotive direction (Troje and 
Westhoff, 2006) but also contribute to the detection of life in a visual environment (Chang and 
Troje, 2008) without the observers’ explicit recognition or attention (Bertenthal and Pinto, 1994; 
Chang and Troje, 2009a; Chang and Troje, 2009b; Wang et al., 2010). As a result, the processing 
of local BM cues is less affected by attention, relatively robust to masking noise, and does not show 
a learning trend (Chang and Troje, 2009a; Thornton et al., 2002). In contrast, global BM processing 
involves top-down modulation, with attention playing a critical role in its perception (Thompson and 
Parasuraman, 2012; Thornton et  al., 2002). Dispersed attention adversely affects performance. 
Compared with local BM processing, global BM processing is susceptible to learning and is heavily 
hindered by increased mask densities (Thornton et al., 2002). These findings suggest that local and 
global mechanisms play different roles in BM perception, although the exact mechanism underlying 
this distinction remains unclear. Exploring these two components of BM perception will enhance our 
understanding of the differences between local and global BM processing and shed light on the 
psychological processes involved in atypical BM perception.

In recent years, BM perception has received significant attention in studies on mental disorders 
(e.g. schizophrenia Kim et al., 2013) and developmental disabilities, particularly ASD, which is char-
acterised by deficits in social communication and social interaction (Federici et al., 2020; Todorova 
et al., 2019). This is because BM perception is considered a hallmark of social cognition. Individuals 
with deficits in BM processing exhibit worse social perception in daily life (Pavlova, 2012). Another 
study found that participants’ ability to process BM cues correlated with their autistic traits, partic-
ularly in the subdimension of social communication (Wang et al., 2018). Therefore, examining BM 
perception could enhance our understanding of social dysfunction in children with ADHD. Compared 
with the numerous studies examining impaired BM perception in ASD, few studies have focused on 
BM perception in children with ADHD. An EEG study found neuroelectrophysiological changes in the 
processing of BM stimuli in children with ADHD (Kröger et al., 2014). Specifically, compared with 
the typically developing (TD) group, children with ADHD showed reduced activity of motion-sensitive 
components (N200) while watching biological and scrambled motions, although no behavioural differ-
ences were observed. Another study found that children with ADHD performed worse in BM detec-
tion with moderate noise ratios than the TD group (Imanipour et al., 2021). This finding may be due 
to the fact that BM stimuli with noise dots will increase the difficulty of identification (McKay et al., 
2012), which highlights the difference in BM processing between TD and ADHD groups (Kröger 
et al., 2014).

Despite initial findings about atypical BM perception in ADHD, previous studies on ADHD treated 
BM perception as a single entity, which may have led to misleading or inconsistent findings (Federici 
et  al., 2020). Hence, it is essential to deconstruct BM processing into multiple components and 
motion features. To enhance our understanding of the ability to process distinct BM cues in ADHD, 
we employed a carefully designed behavioural paradigm, as used in our previous study (Wang et al., 
2018), with slight adjustments made to adapt it for children. This paradigm comprised three tasks 
(Figure 2): BM-Local, BM-Global, and BM-General. BM-Local assessed the ability to process local 
BM cues. Scrambled BM sequences were displayed and the participants used local BM cues to judge 
the direction the scrambled walker was facing. BM-Global tested the ability to process the global 
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configuration cues of the BM walker. Local cues were uninformative, and the participants used global 
BM cues to determine the presence of an intact walker. BM-General tested participants’ ability to 
process general BM cues (local +global cues). The stimulus sequences consisted of an intact walker 
and a mask containing similar target local cues so that the participants could use general BM cues to 
judge the direction the walker was facing.

Experiment 1 examined three specific BM perception abilities in children with ADHD. Children with 
ADHD show impaired social interaction (Grzadzinski et al., 2011; Mulligan et al., 2009; Reiersen 
et  al., 2007), which implies atypical social cognition. Therefore, we speculated that children with 
ADHD would perform worse on the three tasks than TD children. In Experiment 2, we further explored 
the relationship between BM perception and social interaction ability in children with ADHD and iden-
tified potential factors (e.g. intelligence quotient [IQ], age, and attention) that may affect BM percep-
tion in this population. We speculated that if the mechanisms of processing local and global BM cues 
are indeed distinct, as suggested by previous studies, then impairment in the ADHD population and 
the influential factors behind the impairment may be different.

Table 1. Demographic characteristics of typically developing (TD) and attention deficit hyperactivity disorder (ADHD) groups.

Experiment 1

p-value

Experiment 2

p-valueTD ADHD TD ADHD

Sample 36 39 33 42

Age (years) 9.09±2.18 9.88±2.23 0.126 8.75±1.94 9.34±1.89 0.191

Sex ratio (% male) 38.89% 71.79% 0.004 42.42% 64.28% 0.059

Figure 2. Illustration of the trial sequence. In biological motion (BM)-Local, a monitor displayed scrambled BM sequences. Participants only judged 
the facing direction of the scrambled walker using local BM cues. In BM-Global, each trial only showed an intact or scrambled walker (black dots in the 
figure) embedded within a mask containing local BM cues. Because the two conditions contained the same local cues that were also present in the 
mask, the participant must rely on global BM cues to determine whether an intact walker was present in the mask. The figure shows one of five possible 
directions the intact walker could face (i.e. facing participants). In BM-General, the stimuli sequence consisted of an intact walker (black dots) and a mask 
containing similar target local cues, and children judged the direction the walker was facing using general BM cues (local +global). Dots in the figure are 
rendered in black for better illustration but were displayed in white in the actual experiments.

https://doi.org/10.7554/eLife.90313
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Results
Children with ADHD exhibit atypical BM perception
Thirty-six TD children (age = 9.09 ± 2.18, 14 male) and 39 children with ADHD (age = 9.88±2.23, 28 
male) participated in Experiment 1 (Table 1). The groups did not differ by age (t73=–1.550, p=0.126) 
but differed in sex (χ2=8.964, p=0.004). Figure 3 displays the mean accuracies (ACC) for both the 
TD and ADHD groups across the three tasks in Experiment 1. We examined the difference in the 
ACC between the TD and ADHD groups for each task using a two-sample t-test. The results of 
BM-Local showed a significant difference (TD: 0.52±0.13, ADHD: 0.44±0.09, t73=3.059, p=0.003, 
Cohen’s d=0.71), indicating that children with ADHD exhibited impaired local BM processing ability. 
For BM-Global and BM-General, where children were asked to detect the presence or discriminate 
the direction the target walker was facing, the TD group had higher accuracies than the ADHD group 
(BM-Global - TD: 0.70±0.12, ADHD: 0.59±0.12, t73=3.677, p<0.001, Cohen’s d=0.85; BM-General - 
TD: 0.79±0.12, ADHD: 0.63±0.17, t73=4.702, p<0.001, Cohen’s d=1.09). These findings suggest the 
presence of impaired global and general BM perception in children with ADHD. To ensure that sex did 
not influence the results, we conducted a subsampling analysis with balanced data (Pirracchio et al., 
2012), and the results remained consistent (see Appendix 1).

Atypical perception of local BM information predicts impaired social 
interaction in ADHD
Experiment 1 provides evidence of atypical BM perception in children with ADHD. Previous studies 
have revealed that BM processing ability is a hallmark of social cognition (Pavlova, 2012) and is nega-
tively correlated with social ability (Wang et al., 2018). Substantial evidence indicates that children 
with ADHD often experience problems with social interaction. We hypothesised that compromised 
social interaction in children with ADHD would be associated with BM processing. To confirm this 
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Figure 3. The mean accuracy of the three tasks. Typically developing (TD) children had higher accuracies than children with attention deficit 
hyperactivity disorder (ADHD) in the three tasks in Experiment 1. Error bars show standard deviations. TD group: n = 36, ADHD group: n = 39; two-
sample t-tests; **p<0.01, ***p<0.001.
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hypothesis, we recruited 42 naïve children with ADHD (age = 9.34±1.89, 27 male) to participate in 
Experiment 2 and examined the relationship between their social interaction abilities and BM percep-
tion. Parents or caregivers completed the Social Responsiveness Scale (SRS). A higher SRS total score 
indicates worse social ability. The SRS total score of the ADHD group was higher than that of the 
TD group (SRS total score - ADHD: 54.64±18.42, TD: 38.64±12.47, t73=–4.277, p<0.001). We found 
that children with higher total SRS scores performed worse on the three tasks; that is, the abilities of 
BM processing were negatively correlated with SRS total score (BM-Local: r=–0.264, false discovery 
rate [FDR]-corrected p=0.033; BM-Global: r=–0.238, FDR-corrected p=0.039; BM-General: r=–0.359, 
FDR-corrected p=0.006).

The correlations encompassing all data from both groups might reflect group disparities, given 
the significant distinction in SRS total score between TD and ADHD children, alongside their marked 
differences in BM processing abilities. Therefore, we conducted additional subgroup analysis to 
further explore the relationship between social interaction and BM processing ability in children with 
ADHD. As depicted in Figure 4, the correlation between the SRS total score and the ability to process 
local cues was only found in the ADHD group (ADHD: r=–0.461, FDR-corrected p=0.004; TD: r=0.109, 
FDR-corrected p=0.547), particularly on subscales of social awareness, social cognition, social commu-
nication, social motivation (seeTable 2 for detailed information). However, we did not find a statis-
tically significant correlation between the SRS total score and global or general BM processing in 
either the ADHD or TD groups (global BM perception, TD: r=–0.020, FDR-corrected p=0.910, ADHD: 
r=–0.207, FDR-corrected p=0.374; general BM perception, TD: r=–0.118, FDR-corrected p=0.514, 
ADHD: r=–0.286, FDR-corrected p=0.134).

To determine the specificity of the correlation between local BM processing and SRS total score 
in the ADHD group, we constructed general linear models to further compare these correlations 
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Figure 4. Correlations between response accuracies and social responsiveness scale (SRS) total score. The ability to process local cues is significantly 
correlated with the SRS total score in the attention deficit hyperactivity disorder (ADHD) group. The shading represents the 95% confidence interval. 
**FDR-corrected p<0.01.
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(Zhonglin et al., 2005) (see Appendix 2). We observed a significantly stronger correlation between 
SRS total score and response accuracy in the ADHD group compared to the TD group (p=0.003) for 
the BM-Local, but not for the BM-Global (p=0.381) or BM-General (p=0.455). Additionally, our results 
showed trends towards significance, indicating that the correlation between the SRS total score 
and response accuracy of the ADHD group in BM-Local was more negative than that in BM-Global 
(p=0.074) or in BM-General (p=0.073). These findings suggest that the atypical local BM processing 
ability may be specifically related to the impairment of social interaction in children with ADHD.

Global BM processing develops with age and is regulated by reasoning 
intelligence and attention function
Many factors can affect social cognition in ADHD, such as general cognitive impairment (Bora and 
Pantelis, 2016), symptom severity (McKay et  al., 2023), and age (Bora and Pantelis, 2016). To 
better understand their role in atypical BM processing, we examined the relationship between BM 
task performance and factors such as age, full-scale intellectual quotient (FIQ), and attention function 
in the ADHD group. Children with ADHD in Experiments 1 and 2 completed the QB test for assessing 
attention function (see Materials and methods). Data from the ADHD group in both Experiments 1 
and 2 were integrated, resulting in 80 ADHD participants (one child did not complete the QB test). 
Three linear models were built to investigate the contributing factors: (a) ACCBM-Local = β0 + β1 * age + 
β2 * gender + β3 * FIQ + β4 * QbInattention, (b) ACCBM-Global = β0 + β1 * age + β2 * gender + β3 * FIQ + 
β4 * QbInattention, and (c) ACCBM-General = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * QbInattention 
+ β5 * ACCBM-Local + β6 * ACCBM-Global. ACCBM-Local, ACCBM-Global and ACCBM-General refer to the response 
accuracies of the three tasks in the ADHD group, and QbInattention is the standardised score for 

Figure 5. Factors influencing biological motion (BM) perception in attention deficit hyperactivity disorder (ADHD) children. Post hoc path analysis 
confirmed that the effect of sustained attention on performance in BM-General was entirely mediated by Perceptual Reasoning, and the ability of global 
BM processing partly mediated the effect of age on performance in BM-General.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Factors influencing biological motion (BM) perception in typically developing (TD) children.

Table 2. The correlation between the ability of local biological motion (BM) processing and the 
subdimensions of social responsiveness scale (SRS) in attention deficit hyperactivity disorder (ADHD) 
children.

Correlation  
coefficient (r)

FDR-corrected 
 p-value

Social  
awareness -0.333 0.039

Social  
cognition -0.416 0.020

Social  
communication -0.381 0.022

Social  
motivation -0.406 0.020

Autistic  
mannerisms -0.245 0.117

https://doi.org/10.7554/eLife.90313
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sustained attention function. We screened the factors with the largest contribution to the models 
using stepwise regression. In model (a), no variable remained after stepwise regression, suggesting 
that local BM processing remained stable with age and was not affected by attention or IQ. In model 
(b), the ability to process global BM cues was enhanced with age (standardised β1=0.251, p=0.025). 
In model (c), higher FIQ, particularly on the subdimension of Perceptual Reasoning (standardised 
β3=0.271, p=0.005), and better performance in global BM processing (standardised β6=0.290, 
p=0.004) predicted better performance in general BM processing. Furthermore, as children aged, 
the ability to probe general BM information improved (standardised β1=0.365, p<0.001). It is worth 
noting that QbInattention showed a strong negative correlation with Perceptual Reasoning (r=–0.355, 
p=0.001) and general BM perception (r=–0.246, p=0.028). Owing to the potential collinearity issue, 
we employed a post hoc path analysis to visualise these relationships (Figure 5). The results indicated 
that sustained attention (i.e. QbInattention) did not directly predict performance in BM-General but 
was significantly indirectly predicted by Perceptual Reasoning ability. Furthermore, as children with 
ADHD aged, their performance in BM-General improved, both directly and through the enhanced 
processing of global BM cues.

We also built three models to explore further the effects of Reasoning IQ and age on BM percep-
tion in TD children: (d) ACCBM-Local = β0 + β1 * age + β2 * gender + β3 * FIQ. (e) ACCBM-Global = β0 + β1 * 
age + β2 * gender + β3 * FIQ; (f) ACCBM-General = β0 + β1 * age + β2 * gender + β3 * FIQ + β4 * ACCBM-Local 
+ β5 * ACCBM-Global. In model (d), no regressor remained significant after stepwise regression. However, 
in models (e) and (f), we observed positive relationships between age and performance (model e: 
standardized β1=0.396, p=0.017; model f: standardised β1=0.330, p=0.049). We also conducted 
a path analysis similar to that in the ADHD group and found no statistically significant mediator 
effect (Figure 5—figure supplement 1). The complete information about models a-f can be found 
in Table 3.

In summary, our findings suggest that the ability to perceive global and general BM cues, rather 
than local BM cues, improves with age in both groups. We speculated that age-related improvement 
was different when processing different BM cues and in different groups. Therefore, we examined 
the differences between the age-related improvement in processing local cues and that in processing 
global and general cues (see Appendix 2). In the ADHD group, we observed that the ability to process 
general BM cues significantly improved with age compared to local cues (p<0.001) and a trend that 
the improvement in processing global BM cues with age was greater than that in processing local BM 
cues (p=0. 073). However, these patterns were not observed in the TD group. In addition, we exam-
ined the differences in the improvements in processing of BM cues with age between the two groups 
for each task. There was no difference in the effect of age on the response accuracy between the TD 
and ADHD groups for the three tasks (see Appendix 2).

Table 3. Coefficients and summaries of models a-f.

Model Predictor Standardised coefficient
95% confidence 
interval T statistic p-value R square

Std. error of the 
estimate*

Model a
No significant 
variable — — — —

— —

Model b age 0.251 [0.033, 0.469] 2.289 0.025 0.063 0.974

Model c

age 0.365 [0.172, 0.559] 3.759 <0.001 0.339 0.829

Perceptual 
Reasoning 0.271 [0.082, 0.459] 2.862 0.005

ACCBM-Global 0.290 [0.097, 0.484] 2.987 0.004

Model d
No significant 
variable — — — —

— —

Model e age 0.396 [0.076, 0.716] 2.515 0.017 0.157 0.932

Model f age 0.330 [0.001, 0.659] 2.039 0.049 0.109 0.958

*Std. error of the estimate is the standard deviation of the error term, and is the square root of the Mean Square Residual (or Error).

https://doi.org/10.7554/eLife.90313
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Discussion
Our study contributes several promising findings concerning atypical BM perception in children with 
ADHD. Specifically, we observed atypical local and global BM perception in children with ADHD. 
Notably, local and global BM processing exhibited distinct features. The ability to process local BM 
cues appears to be associated with social interaction traits in children with ADHD. In contrast, global 
BM processing was associated with age-related development. In addition, general BM perception 
may be affected by factors such as attention.

BM perception is a widely studied topic in visual cognition owing to its inherent biological and 
social properties. BM processing has significant value in successfully navigating daily life, particularly in 
non-verbal communication (Clarke et al., 2005; Dittrich et al., 1996) and adaptive behaviour (Pollick 
et al., 2005; Thompson and Parasuraman, 2012). In TD children, there is a clear association between 
BM perception and social cognitive abilities (Kutsuki et al., 2009). For example, 12-month-old infants 
exhibit social behaviours (i.e. following gaze) elicited by BM displays (Yoon and Johnson, 2009). 
Therefore, BM perception plays a crucial role in the development of children’s social cognition. This 
‘social interpretation’ of BM suggests that the difficulties in processing BM may serve as an indicator 
of impaired social interaction (Wang et al., 2018). Our results are consistent with these findings. We 
observed atypical BM perception in children with ADHD and a significant relationship between BM 
perception performance and the SRS total score. Further subgroup analysis revealed a significant 
negative correlation between the SRS total score and the accuracy of local BM processing in the 
ADHD group. This correlation was stronger in the ADHD group than in the TD group. The lack of a 
significant correlation may be due to the narrow range of SRS scores in the TD group. Future studies 
should increase the sample size to explore the correlations among diverse individuals. These findings 
suggest that BM processing is a distinct hallmark of social cognition in ADHD children (Pavlova, 2012; 
Wang et al., 2018).

BM perception is a multi-level phenomenon (Troje, 2013; Troje and Basbaum, 2008; Troje and 
Chang, 2013). At least in part, the processing of local and global BM information appears to involve 
different neural mechanisms (Duarte et  al., 2022). Sensitivity to local BM cues emerges early in 
life (Simion et al., 2008; Vallortigara et al., 2005) and involves rapid processing in the subcortical 
regions (Buzzell et al., 2013; Chang et al., 2018; Duarte et al., 2022; Hirai et al., 2009). As a basic 
pre-attentive feature (Wang et al., 2010), local BM cues can guide visual attention spontaneously 
(Bosbach et al., 2004; Thornton and Vuong, 2004). In contrast, the ability to process global BM 
cues is related to slow cortical BM processing and is influenced by many factors such as attention 
(Thompson and Parasuraman, 2012; Thornton et al., 2002) and visual experience (Chang and Troje, 
2009b; Troje and Basbaum, 2008). As mentioned above, we found a significant negative correlation 
between the SRS total score and the accuracy of local BM processing, specifically in the ADHD group. 
This could be due to decreased visual input related to atypical local BM processing, which further 
impairs global BM processing. According to the two-process theory of biological motion processing 
(Hirai and Senju, 2020), local BM cues guide visual attention toward BM stimuli (Bardi et al., 2011; 
Simion et al., 2008). Consequently, the visual input of BM stimuli increases, facilitating the develop-
ment of the ability to process global BM cues through learning (Chang and Troje, 2009a; Grossman 
et  al., 2004). The latter is a prerequisite for attributing intentions to others and facilitating social 
interactions with other individuals (Chang and Troje, 2008; Frith and Frith, 1999; Troje and Chang, 
2023). Thus, atypical local BM processing may contribute to impaired social interactions through 
altered visual input. Further empirical studies are required to confirm these hypotheses.

The ability to process global BM cues develops with age. Previous studies indicated that global 
BM perception is enhanced with age in TD children (Annaz et al., 2010; Ghanouni et al., 2015). 
This developmental trend in global BM processing is also evident in individuals with impaired BM 
perception (e.g. children with ASD). BM processing performance in children with ASD becomes more 
aligned with that of TD children as they age (Hubert et  al., 2007; Murphy et  al., 2009; Saygin 
et al., 2010; Todorova et al., 2019). Our study contributes new evidence to the understanding of the 
development of global BM processing. We found that the ability to process global and general BM 
cues improved significantly with age in both the TD and ADHD groups, implying that the processing 
module for global BM cues tends to mature with development. This finding is akin to the potential 
age-related improvements observed in certain aspects of social cognitive deficits in individuals with 
ADHD (Bora and Pantelis, 2016). Interestingly, in the ADHD group, the improvement in processing 
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general and global BM cues was greater than in processing local BM cues. Few developmental studies 
have been conducted on local BM processing. The ability to process local BM cues remained stable 
and did not exhibit a learning trend (Chang and Troje, 2009a; Thornton et al., 2002). A reason-
able interpretation may be that local BM processing is a low-level mechanism, probably performed 
by the primary visual cortex and subcortical regions such as the superior colliculus, pulvinar, and 
ventral lateral nucleus (Chang et al., 2018; Hirai and Senju, 2020; Loula et al., 2005), which are 
not malleable. Although there was no statistical difference between the improvements in processing 
local and global BM cues in the TD group, this may be due to the relatively small sample size or the 
relatively higher baseline abilities of BM perception in TD children, resulting in a relatively milder 
improvement. It is worth noting that the ability to process global BM cues was positively correlated 
with the performance in processing general BM cues in the ADHD group, whereas no such correlation 
was found in the TD group. This suggests that TD children are able to extract and integrate both local 
and global cues, whereas children with ADHD may rely more on global BM cues to judge the direc-
tion the walker is facing when presented with both local and global BM cues, which correspond to a 
hierarchical model (Troje and Basbaum, 2008). Once a living creature is detected, an agent (i.e. is it 
a human?) can be recognised by a coherent, articulated body structure that is perceptually organised 
based on its motions (i.e. local BM cues) (Rosch, 1988). This involves top-down processing and prob-
ably requires attention (Cavanagh et al., 2001; Thornton et al., 2002), particularly in the presence 
of competing information (Thompson and Parasuraman, 2012). Our findings are consistent with 
those of previous studies on the cortical processing of BM (Safford et al., 2010), as we found that 
the severity of inattention in children with ADHD was negatively correlated with their performance in 
global BM processing, whereas this significant correlation was not found in local BM processing, which 
may involve bottom-up processing (Hirai and Senju, 2020; Troje and Chang, 2023) and might not 
need participants’ explicit attention (Chang and Troje, 2009a; Hirai et al., 2011; Thompson et al., 
2007; Wang et al., 2010). However, further studies are needed to verify this hypothesis.

Interestingly, children with impaired BM perception may employ a compensatory strategy (Ruth-
erford and Troje, 2012). Previous studies found no impairment in BM recognition in individuals with 
autism with high IQ (Rutherford and Troje, 2012), but children with ASD exhibited weaker adapta-
tion effects for biological motion than TD children (van Boxtel et al., 2016). One possibility is that 
individuals with a high IQ and impaired BM perception can develop or employ reliable strategies 
for BM recognition, compensating for the lack of intuitive social perceptual processing (Atkinson, 
2009; Koldewyn et al., 2010). The current study supports this assumption, as children with a higher 
IQ, particularly in Perceptual Reasoning, demonstrated better performance. Owing to the impact of 
attention deficits on Perceptual Reasoning, the performance of children with ADHD did not align with 
that of TD children.

Overall, our study reveals two distinct and atypical fundamental abilities underlying BM perception 
in children with ADHD. Notably, anomalous local BM processing may predict impaired social inter-
actions in children with ADHD. Moreover, these results revealed the potential contributions of age, 
IQ, and attention to BM information processing. These findings also shed new light for future studies. 
First, different developmental trends appear in local and global BM processing. Further studies are 
required to explore the relationship between the two fundamental BM processing abilities, which 
will contribute to understanding the respective and mutual neural mechanisms underlying the two 
types of BM processing. Second, exploring the performance of more advanced BM processing in chil-
dren with ADHD, such as emotion and identity recognition in BM tasks, is necessary to delineate the 
neural profiles involved in processing BM in ADHD. Finally, a comparative study between ADHD and 
ASD is warranted to identify common neuropsychological traits and biomarkers of social cognition 
impairment.

Materials and methods
Participants
One hundred seventeen children with and without ADHD were recruited for this study. Eighty-one 
children met the ADHD diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) (American Psychiatric Association, 2013). The clinical diagnosis was first made by an 
experienced child and adolescent psychiatrist in the Child and Adolescent Psychiatric Outpatient 
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Department of Peking University Sixth Hospital, based on the ADHD Rating Scale. The Chinese 
version of the Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version 
DSM-5 (K-SADS-PL-C DSM-5) (Dun et  al., 2022; Kaufman et  al., 2016), a semi-structured inter-
view instrument, was then implemented to confirm the diagnosis. Thirty-six TD children from ordinary 
primary schools in Beijing were screened for the presence of ADHD, ASD, affective disorders, and 
behavioural disorders by a trained psychiatrist. All participants in the ADHD group had a full-scale 
IQ >75 (fifth upper percentile) on the Wechsler Intelligence Scale for Children-Fourth Edition, and all 
TD children had a full-scale IQ above the fifth percentile on Raven’s Standard Progressive Matrices 
(Pind et al., 2003), which is used to measure reasoning ability and is regarded as a non-verbal esti-
mate of intelligence. The exclusion criteria for both groups were as follows: (a) neurological diseases; 
(b) other neurodevelopmental disorders (e.g. ASD, mental retardation, and tic disorders), affective 
disorders, and schizophrenia; (c) disorders that would impact the completion of the experiment; (d) 
taking psychotropic drugs or stimulants within the past 30 days; and (e) previous head trauma or 
neurosurgery.

Thirty-six TD children (age = 9.09±2.18, 14 male) and 39 children with ADHD (age = 9.88±2.23, 
28 male) participated in Experiment 1. The groups did not differ by age (t73=–1.550, p=0.126) but 
differed in sex (χ2=8.964, p=0.004). Forty-two ADHD children (age = 9.34±1.89, 27 male) participated 
in Experiment 2. The participants did not participate in Experiment 1. The participants’ demographic 
characteristics are presented in Table 1. Currently, there is no comparable study on ADHD that indi-
cates effect size as a reference. Studies investigating BM perception in children with ASD typically 
have sample sizes ranging from 15 to 35 participants per group (Todorova et al., 2019). Considering 
the mild impairment of social function in children with ADHD, we determined that a sample size of 
35–40 participants per group was reasonable for this study. All individuals in each group had normal or 
corrected-to-normal vision and were naïve to the experimental objectives. Written informed consent, 
and consent to publish, was obtained from the parents of all the children before testing. This study 
was approved by the Institutional Review Boards of Peking University Sixth Hospital and the Institute 
of Psychology, Chinese Academy of Sciences.

Assessment
K-SADS-PL-C DSM-5
The K-SADS-PL-C DSM-5 is a semi-structured interview instrument used to evaluate mental disorders 
in children and adolescents aged 6–18 years (Kaufman et al., 2016). It involves 35 diagnoses based 
on the diagnostic criteria of the DSM-5. A trained 

Video 1. An intact walker without a mask. The dots 
in the video are rendered in chromatic colors for 
better illustration and displayed in white in the actual 
experiments.

https://elifesciences.org/articles/90313/figures#video1

Video 2. An example of biological motion (BM)-Local 
(a scrambled walker without a mask). The chromatic 
dots in this video correspond to the major joints of the 
intact walker in Video 1 and are displayed in white in 
the actual experiments.

https://elifesciences.org/articles/90313/figures#video2

https://doi.org/10.7554/eLife.90313
https://elifesciences.org/articles/90313/figures#video1
https://elifesciences.org/articles/90313/figures#video2
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psychiatrist confirmed the diagnosis by interviewing the parents and children. The Chinese version has 
demonstrated great psychometric properties (Dun et al., 2022).

ADHD rating scale
The ADHD Rating Scale was adapted from the ADHD diagnostic criteria of the DSM (Reid et al., 
1998), which requires parents or teachers to complete the scale independently. Its Chinese version 
has excellent psychometric properties and consists of two subscales (Su et al., 2015): inattention (IA, 
nine items) and hyperactivity-impulsivity (HI, nine items). Each item is rated on a four-point Likert scale 
ranging from 1 (the symptom appears ‘never or rarely’) to 4 (the symptom appears ‘very often’). The 
final results create three scores: (1) IA dimension score, (2) HI dimension score, and (3) total score. 
Higher scores indicate more severe ADHD symptoms.

Social responsiveness scale
The social responsiveness scale (SRS) is a widely used quantitative measure with 65 items used to 
assess the severity of social impairment in many mental disorders (Constantino and Gruber, 2005), 
and the psychometric properties of the Chinese version are reliable (Cen et al., 2017). It includes 
five sub-dimensions: social awareness, social cognition, social communication, social motivation, and 
autistic mannerisms. Each item is rated on a scale from 0 (never true) to 3 (almost always true), with 
higher scores indicating worse social ability.

Wechsler intelligence scale for children-fourth edition
The Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is widely used to test compre-
hensive intelligence in individuals aged 6–17  years. It contains 15 subtests comprising four broad 
areas of intellectual functioning: Verbal Comprehension, Perceptual Reasoning, Working Memory, 
and Processing Speed. The scores in the four broad areas constitute the full-scale intellectual quotient 
(FIQ).

QB test
The QB test is a 15 min continuous performance test (CPT) for assessing inattention and impulsivity, 
with a high-resolution infrared camera monitoring the participant’s activity (QbTech, 2010). Previous 
psychometric studies have validated its good measurement properties (Hult et al., 2018). After the 
test is completed, several Q scores are calculated to summarise the participants’ performances. The 

Q scores are standardised based on normative 
data matched for sex and age. A higher Q score 
implies more abnormal performance. In this study, 
we focused on QbInattention, the Q score indi-
cating sustained attention, particularly when chil-
dren are focused on tasks.

Video 3. An example of biological motion (BM)-
Global (an intact or scrambled walker with a mask). The 
chromatic dots in this video correspond to the major 
joints of the intact walker in Video 1 and are displayed 
in white in the actual experiments.

https://elifesciences.org/articles/90313/figures#video3

Video 4. Intact walkers facing five directions in 
biological motion (BM)-Global. The dots in this 
video are rendered in black for better illustration and 
displayed in white in the actual experiments.

https://elifesciences.org/articles/90313/figures#video4

https://doi.org/10.7554/eLife.90313
https://elifesciences.org/articles/90313/figures#video3
https://elifesciences.org/articles/90313/figures#video4


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Tian et al. eLife 2023;12:RP90313. DOI: https://doi.org/10.7554/eLife.90313 � 13 of 23

Stimuli and procedure
Point-light BM stimuli sequences adopted in this 
study have been used in previous studies (Vanrie 
and Verfaillie, 2004), which were derived from 
the configurations of individual walking motions 
on a treadmill and did not contain an overall trans-
lation. Each frame of BM sequences consisted of 
13 white dots representing the human head and 
major joints and was displayed on a grey back-
ground (see Video 1). Each walking cycle lasted 
1 s with 30 frames. For each trial, the initial frame 
of BM sequences was randomised. The entire 
point-lighted BM walker was presented at approx-
imately a 5.7° vertical visual angle. Stimuli were 
presented on a 14-inch monitor, and responses 
were evaluated using MATLAB together with 
PsychToolbox extensions. All subjects completed 
the experiments in a dimly lit room with their 
heads on a chinrest to ensure that their eyes were 
50 cm away from the monitor.

In Experiment 1, the children were required 
to complete three tasks that were similar to 
but slightly modified from the versions imple-
mented in our previous study (Wang et al., 2018; 

Figure 2). Each trial began with a fixation cross (0.6 ° × 0.6°). Following a random interval of 1200–
1500 ms, the monitor displayed a task-specific BM sequence lasting for 2 s (60 frames).

BM-Local assessed participants’ ability to process local BM cues. During the task, the monitor 
displayed only a scrambled walker facing either the left or right (Video 2). Specifically, the 13 dots 
constituting the intact walker were randomly relocated within the original range of the BM walker 
(randomly presented in 2D). This manipulation disrupted the global configuration of the intact walker 
while retaining local kinematics. After the display, we required the children to press a left or right 
button to indicate the direction of motion of the unidentified creature (i.e. the scrambled BM walker) 
as accurately as possible. Children did not receive feedback on the accuracy of each response. Thirty 
trials were conducted, with 15 trials for each condition (left and right).

BM-Global tested the ability to process the global configuration cues of the BM walker. A target 
walker (scrambled or intact) was displayed within the mask (Video  3) during this task. The mask 
consisted of two scrambled target walkers (26 dots) with the same locomotion direction as the target 
walker, displayed within a boundary approximately 1.44 times larger than the intact walker. A scram-
bled or intact version of the target walker was randomly embedded in the mask and entirely overlaid. 
Thus, the global BM component could be isolated as two conditions (i.e. scrambled and intact walkers) 
containing the same local kinematics information, rendering the local motion cues uninformative. The 
children were required to judge whether there was an intact walker on the mask. A correct response 
relied on the extraction of global cues from an intact walker. To prevent children from learning the 
shape of the walker (Chang and Troje, 2009a), we set target walkers that possibly faced one of five 
equally spaced directions from left to right. Of the five walkers used, two-faced straight to the left 
or right, orthogonal to the viewing direction. Two walked with their bodies oriented at a 45 degree 
angle to the left or right of the observer. The last one walked towards the observer. Video 4 shows the 
five-facing directions of the walker. Thirty trials were conducted consisting of two conditions (intact 
or scrambled target).

BM-General tested participants’ ability to process general BM cues (local and global). In BM-Gen-
eral, the monitor displayed an intact walker (facing either the left or right) embedded within a mask 
(see Video 5). The mask used in this task was similar to that used in BM-Global. The children were 
required to judge the direction the target walker was facing (left or right). Because the mask and 
target walker contained the same local BM cues and the target walker was presented with additional 
global configuration cues, children could rely on general BM information (i.e. a combination of local 

Video 5. The example of biological motion (BM)-
General (an intact walker with a mask). The chromatic 
dots in this video correspond to the major joints of the 
intact walker in Video 1 and are displayed in white in 
the actual experiments.

https://elifesciences.org/articles/90313/figures#video5
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and global cues) to perform the task. BM-General consisted of 30 trials, with 15 trials for each facing 
direction. The other parameters of BM-Global and BM-General were similar to those of BM-Local. 
Before each task, the children practiced for five trials to ensure a good understanding. We performed 
the three tasks in a fixed order so that the participants were naïve to the nature of the local BM cues 
in BM-Local.

In Experiment 2, 42 children with ADHD completed the same procedure as in Experiment 1. In 
addition, the parents completed the SRS to assess social interaction.

Statistics
Two-sample t-tests were used to examine the difference in BM perception abilities between TD and 
ADHD children (Fagerland, 2012; Rochon et al., 2012), and Pearson’s correlation analyses were used 
to assess the relationship between the accuracy of each task and the SRS score. Additionally, general 
linear models and path analyses were used to explore potential factors influencing BM perception. 
A p-value <0.05 was considered statistically significant. Path analyses were conducted using AMOS, 
whereas other analyses were conducted using SPSS.
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Appendix 1
Children with ADHD exhibit atypical BM perception (subsampled 
balanced data)
To address potential gender-related confounds, we applied a statistical matching technique, 
Propensity Score Matching (PSM), to obtain a sub-dataset (1:1 matching) using the Matching 
package in R 4.3.0. We matched the characteristics, namely age and gender, to create more 
similar groups. After matching, 24 TD children (age = 9.70±2.08, 14 male) and 24 children with 
ADHD (age = 9.67±1.93, 14 male) were included in the following analysis. The two groups did 
not differ significantly in age (t46=0.041, p=0.967) and had an identical gender ratio. Our findings, 
as reproduced in Appendix 1—figure 1, confirmed that the TD group exhibited higher response 
accuracy than the ADHD group in all three tasks (BM-Local - TD: 0.51±0.11, ADHD: 0.45±0.10, 
t46=2.092, p=0.042, Cohen’s d=0.60; BM-Global - TD: 0.73±0.11, ADHD: 0.57±0.10, t46=5.116, 
p<0.001, Cohen’s d=1.48; BM-General - TD: 0.79±0.14, ADHD: 0.58±0.15, t46 = 5.088, p<0.001, 
Cohen’s d=1.47).
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Appendix 1—figure 1. The mean accuracy of the three tasks (subsampled balanced data). Typically developing 
(TD) children had higher accuracies than children with attention deficit hyperactivity disorder (ADHD) in three tasks 
in Experiment 1. Error bars show standard deviations. TD group: n = 24, ADHD group: n = 24; two-sample t-tests; 
*p<0.05; ***p<0.001.
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Appendix 2
The correlation between SRS total scores and the ability to process 
local BM cues in the ADHD group is significantly stronger than in the 
TD group, and the age-related improvement in processing general BM 
cues is significantly greater than in processing local BM cues in ADHD 
group
To further determine the specificity of the correlation between local BM processing and SRS total 
score in the ADHD group. We constructed general linear models to compare these correlations. 
We first examined the difference in the correlations between the response accuracy for each task 
and SRS total score between the TD and ADHD groups. The differences between correlations were 
tested by testing interaction terms in general linear models. Specifically, we recoded the categorical 
variable (i.e. group) into a dummy variable (D) using the TD group as a reference and constructed a 
general linear model for each task (Appendix 2—table 1, Model 1–3): SRS = β0 + β1 * ACC + β2 * d + 
β3 * (ACC * D). ACC refers to the response accuracy, and SRS refers to the SRS total score. If the effect 
of the interaction term (i.e. β3) is statistically significant, it indicates that the correlations between 
response accuracy and SRS total score for the TD and ADHD groups are significantly different. For 
BM-Local, we observed that the correlation between SRS total score and ACC in the ADHD group 
was significantly stronger than in the TD group (standardised β3=–0.629, p=0.003). However, no 
significant difference was identified with regard to BM-Global (standardised β3=–0.195 p=0.381) or 
BM-General (standardised β3=–0.179, p=0.455).

In addition, we further examined the relative differences in correlations with SRS total score 
between BM-Local and BM-Global or BM-General in the ADHD group (Appendix  2—figure 1). 
Similarly, we recoded three task types to two dummy variables, D1 and D2, using BM-Local as a 
reference. The coefficient of D1 represents the difference in relationship to SRS total score between 
BM-Local and BM-Global, and the coefficient of D2 represents the difference in relationship 
to SRS total score between BM-Local and BM-General. A general linear model was constructed 
(Appendix 2—table 1, Model 4): SRS = β0 + β1 * ACC + β2 * D1 + β3 * D2 + β4 * (ACC * D1) + β5 * 
(ACC * D2). If the effect of the interaction term (i.e. β4 or β5) is statistically significant, it indicates a 
difference in correlations with SRS total score between BM-Local and BM-Global (or BM-General). 
The results suggested trends where the correlations with SRS total score were more negative for 
BM-Local relative to BM-Global (standardised β4=0.580  p=0.074) and BM-General (standardised 
β5=0.550 p=0.073).

To further examined the differences between the age-related improvement in processing local 
cues and that in processing global and general cues (Appendix 2—figure 2), we employed similar 
analyses as described earlier. We recoded task types into two dummy variables, D1 and D2, using 
BM-Local as a reference. The coefficient of D1 represents the difference in relationship to age 
between BM-Local and BM-Global, and the coefficient of D2 represents the difference in relationship 
to age between BM-Local and BM-General. The following model was created for each group 
(Appendix 2—table 2, Model 5–6): ACC = β0 + β1 * age + β2 * D1 + β3 * D2 + β4 * (age * D1) + β5 * 
(age * D2). If the effect of the interaction term (i.e. β4 or β5) is statistically significant, it indicates a 
difference in the effect of age on ACC between BM-Local and BM-Global (or BM-General). In the 
ADHD group, we observed a significant difference in the effect of age on ACC between BM-Local 
and BM-General (standardised β5=0.462, p<0.001) and marginally significant differences in the effect 
of age on ACC between BM-Local and BM-Global (standardised β4=0.228, p=0.073). However, there 
was no difference in the effect of age between BM-Local and BM-Global or BM-General in the TD 
group (standardised β4=0.095, p=0. 575; standardised β5=0.056, p=0.739).

We also examined the differences in age-related improvements in processing BM cues between 
two groups for each task (Appendix 2—figure 3). We recoded the variable group into a dummy 
variable (D) using the TD group as a reference, and established a general linear model for each task 
(Appendix 2—table 2, Model 7–9): ACC = β0 + β1 * age + β2 * D + β3 * (age * D). If the effect of 
the interaction term (i.e. β3) is statistically significant, it indicates a difference in the effect of age on 
ACC between the TD group and the ADHD group. The results showed no difference in the effect 
of age on ACC between the TD and the ADHD group in three tasks (BM-Local: standardised β3=–
0.306, p=0.112; BM-Global: standardised β3=–0.091, p=0.621; BM-General: standardised β3=0.192, 
p=0.263).

https://doi.org/10.7554/eLife.90313
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Appendix 2—figure 1. Correlations between the response accuracies and social responsiveness scale (SRS) total 
score. The shading represents the 95% confidence interval.

TD ADHD

6 8 10 12 14 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1.0

Age (year)

A
cc

ur
ac

y 
of

 T
as

ks

Task
BM Local
BM Global
BM General

r = 0.330   
r = 0.396
r = 0.232

r = 0.410
r = 0.251
r = -0.045

Appendix 2—figure 2. Correlations between the response accuracies and age (showed by group). The shading 
represents the 95% confidence interval. * non-corrected p<0.05, *** non-corrected p<0.001.
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Appendix 2—figure 3. Correlations between the response accuracies and age (showed by task). The shading 
represents the 95% confidence interval. 

Appendix 2—table 1. Coefficients and summaries of models for the relationship between social 
responsiveness scale (SRS) total score and biological motion (BM) processing.

Model Predictor
Standardised 
coefficient

95% 
confidence 
interval T statistic p-value R square

Std. error 
of the 
estimate*

Model 1†: SRS = 
β0 + β1 * ACCBM-

Local + β2 * D + 
β3 * (ACCBM-Local 
* D)

ACCBM-Local 0.066 [–0.190, 0.322] 0.513 0.609 0.328 0.837

D 0.821 [0.427, 1.215] 4.151 <0.001

ACCBM-Local * D –0.629 [-1.030,–0.228] –3.127 0.003

Model 2†: SRS = 
β0 + β1 * ACCBM-

Global + β2 * D + 
β3 * (ACCBM-Global 
* D)

ACCBM-Global –0.015 [–0.360, 0.329] –0.090 0.929 0.226 0.898

D 0.845 [0.413, 1.277] 3.898 <0.001

ACCBM-Global * D –0.195 [–0.636, 0.246] –0.881 0.381

Model 3†: SRS = 
β0 + β1 * ACCBM-

General + β2 * D 
+ β3 * (ACCBM-

General * D)

ACCBM-General –0.104 [–0.498, 0.290] –0.526 0.600 0.251 0.883

D 0.765 [0.318, 1.212] 3.411 0.001

ACCBM-General 
* D –0.179 [–0.653, 0.296] –0.751 0.455

Model 4 ‡: 
SRSADHD = β0 + 
β1 * ACC + β2 
* D1 + β3 * D2 
+ β4 * (ACC * 
D1) + β5 * (ACC 
* D2)

ACC –0.828 [-1.357,–0.299] –3.098 0.002 0.112 0.961

D1 0.683 [0.100, 1.267] 2.317 0.022

D2 0.785 [0.185, 1.386] 2.589 0.011

ACC * D1 0.580 [–0.057, 1.216] 1.803 0.074

ACC * D2 0.550 [–0.052, 1.152] 1.808 0.073

*Std. error of the estimate is the standard deviation of the error term, and is the square root of the Mean Square 
Residual (or Error).
†The variable D was a dummy variable (TD group: D=0, ADHD group: D=1, i.e. TD group as a reference).
‡The variable D1 and D2 were dummy variables (BM-Local: D1=0, D2=0; BM-Global: D1=1, D2=0; BM-General: D1=0, 
D2=1, i.e. BM-Local as a reference).
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Appendix 2—table 2. Coefficients and summaries of models for the relationship between age and biological motion (BM) 
processing.

Model Predictor
Standardised 
coefficient

95% confidence 
interval T statistic p- value R square

Std. error of 
the estimate*

Model 5†: ACCADHD 
= β0 + β1 * age + 
β2 * D1 + β3 * D2 + 
β4 * (age * D1) + β5 
* (age * D2)

age –0.027 [–0.203, 0.150] –0.296 0.768 0.373 0.801

D1 0.977 [0.728, 1.227] 7.722 0.000

D2 1.269 [1.019, 1.518] 10.023 0.000

age * D1 0.228 [–0.022, 0.478] 1.800 0.073

age * D2 0.462 [0.212, 0.712] 3.639 <0.001

Model 6†: ACCTD = 
β0 + β1 * age + β2 
* D1 + β3 * D2 + β4 
* (age * D1) + β5 * 
(age * D2)

age 0.181 [–0.055, 0.418] 1.521 0.131 0.517 0.712

D1 1.046 [0.714, 1.379] 6.236 <0.001

D2 1.636 [1.303, 1.969] 9.751 <0.001

age * D1 0.095 [–0.240, 0.429] 0.562 0.575

age * D2 0.056 [–0.278, 0.391] 0.333 0.739

Model 7 ‡: ACCBM-

Local = β0 + β1 * age 
+ β2 * D + β3 * 
(age * D)

age 0.266 [–0.042, 0.575] 1.709 0.090 0.100 0.961

D –0.631 [-1.016,–0.245] –3.242 0.002

age * D –0.306 [–0.684, 0.073] –1.600 0.112

Model 8 ‡: ACCBM-

Global = β0 + β1 * 
age + β2 * D + β3 * 
(age * D)

age 0.342 [0.046, 0.638] 2.290 0.024 0.172 0.922

D –0.723 [-1.093,–0.353] –3.874 <0.001

age * D –0.091 [–0.454, 0.272] –0.496 0.621

Model 9 ‡: ACCBM-

General = β0 + β1 * 
age + β2 * D + β3 * 
(age * D)

age 0.229 [–0.047, 0.505] 1.643 0.103 0.280 0.860

D –0.884 [-1.229,–0.540] –5.081 <0.001

age * D 0.192 [–0.146, 0.531] 1.126 0.263

* Std. error of the estimate is the standard deviation of the error term, and is the square root of the Mean Square Residual (or Error).
†The variable D1 and D2 were dummy variables (BM-Local: D1=0, D2=0; BM-Global: D1=1, D2=0; BM-General: D1=0, D2=1, i.e. BM-Local as 
a reference).
‡The variable D was a dummy variable (TD group: D=0, ADHD group: D=1, i.e. TD group as a reference).

https://doi.org/10.7554/eLife.90313
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