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Abstract
Previous research has demonstrated that biological motion (BM) cues can induce a reflexive attentional orienting effect, a 
phenomenon referred to as social attention. However, it remains undetermined whether BM cues can further affect higher-
order cognitive processes, such as visual working memory (WM). By combining a modified central pre-cueing paradigm 
with a traditional WM change detection task, the current study investigated whether the walking direction of BM, as a non-
predictive central cue, could modulate the encoding process of WM. Results revealed a significant improvement in WM 
performance for the items appearing at the location cued by the walking direction of BM. The observed effect disappeared 
when the BM cues were shown inverted, or when the critical biological characteristics of the cues were removed. Crucially, 
this effect could be extended to upright feet motion cues without global configuration, reflecting the key role of local BM 
signals in modulating WM. More importantly, such a BM-induced modulation effect was not observed with inanimate motion 
cues, although these cues can also elicit attentional effects. Our findings suggest that the attentional effect induced by life 
motion signals can penetrate to higher-order cognitive processes, and provide compelling evidence for the existence of “life 
motion detector” in the human brain from a high-level cognitive function perspective.
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Introduction

Humans and various other vertebrates are extremely sensi-
tive to the motions of biological entities in the environment, 
which is essential for species survival (Blake, 1993; Dittrich 
et al., 1998; Lorenzi & Vallortigara, 2021; Regolin et al., 
2000). Previous research has demonstrated that observers 
can effortlessly distinguish biological motion (BM) signals 
amidst complex visual scenes, even when presented using 
only a few point lights attached to the head and major joints 
of a person (Johansson, 1973). Many biological attributes 
including identity, action, and mental state are readily 

identifiable through such simplified point-light BM stimuli 
(Brooks et al., 2008; Dittrich, 1993; Johnson et al., 2011; 
Loula et al., 2005; Manera et al., 2010). Among these, walk-
ing direction is a particularly important attribute of BM as 
it conveys the disposition and intention of another living 
creature. It has been well documented that walking direc-
tion can be accurately discriminated when the point-light 
displays are embedded in dynamic visual noise (Bertenthal 
& Pinto, 1994; Thurman & Grossman, 2008), presented in 
the peripheral vision (Thompson et al., 2007), or processed 
incidentally (Thornton & Vuong, 2004). Developmental 
studies have further revealed that the ability to detect BM 
direction emerges early in life. Infants as young as 6 months 
of age can discriminate the walking direction of an upright 
point-light walker (Kuhlmeier et al., 2010). Moreover, newly 
hatched chicks exhibit spontaneous sensitivity to BM direc-
tion despite being visually naive (Vallortigara et al., 2005). 
Notably, such intrinsic sensitivity to BM walking direction 
can further affect human behavioral responses. It has been 
demonstrated that BM cues can trigger reflexive attentional 
orienting (Shi et al., 2010; Yuan et al., 2022). This effect 
has been observed not only in adults but also in preschool 
children and infants as young as 6 months of age (Bardi 
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et al., 2015; Zhao et al., 2015). In addition, this reflexive 
attentional orienting effect can even be induced by local BM 
cues (i.e., the motion of the feet) (Wang et al., 2014).

Following the attention to items, deeper cognitive pro-
cesses typically ensue, including the recognition of item 
characteristics and subsequent memory encoding. Here, we 
asked whether and to what extent the BM-mediated atten-
tional orienting can affect high-level cognitive processes, 
particularly working memory (WM). WM is regarded as a 
memory system with limited capacity, which can tempo-
rarily maintain information and support other higher-order 
cognitive functions (Baddeley, 2003, 2012). It is well known 
that attention and WM are intimately linked (Cowan, 1995; 
Gazzaley & Nobre, 2012; Kane et  al., 2001; Oberauer, 
2009). In particular, symbolic spatial cues, such as arrows, 
have the potential to guide attention and improve the pos-
sibility of remembering items appearing at the location of 
attention (Griffin & Nobre, 2003; Li & Saiki, 2015; Tanoue 
et al., 2013). It is worth mentioning that these cues have pre-
dictability about the location where memory items appear. 
Meanwhile, non-predictive BM cues prompt unique reflex-
ive social attention distinct from the non-social attention 
induced by symbolic cues (Shi et al., 2010; Wang et al., 
2020; Yu et al., 2020). Recent studies have demonstrated the 
special role of BM information in WM storage (Ding et al., 
2015; Lu et al., 2016), yet it remains unclear whether and 
how BM, as a non-predictive cue, exerts an impact on WM.

To address this issue, the present study investigated 
whether BM stimuli, as pre-cues, can modulate the encod-
ing process of WM. To achieve this aim, we employed a 
modified central cueing paradigm in conjunction with a tra-
ditional WM change detection task. Specifically, point-light 
BM stimuli were adopted as non-predictive central cues, and 
participants were required to immediately perform a change 
detection task after viewing the central cue. We also utilized 
feet motion sequences as central cues to further explore the 
potential impact of local BM cues on WM performance. In 
addition, we employed a non-predictive inanimate low-level 
motion cue to verify that the modulation effect on WM, if 
observed, is specifically elicited by life motion signals.

Methods

Participants

A total of 120 participants (aged between 18 and 31 years, 
Mage = 23.83 years) took part in the study. Sixteen (11 
females) participated in Experiment 1, 16 (12 females) in 
Experiment 2, 16 (11 females) in Experiment 3, 24 (13 
females) in Experiment 4, 24 (15 females) in Experiment 
5, and the remaining 24 (13 females) in Experiment 6. All 
participants had normal or corrected-to-normal vision and 

were naive to the purpose of the study. They all gave writ-
ten informed consent in accordance with procedures and 
protocols approved by the Institutional Review Board of the 
Institute of Psychology, Chinese Academy of Sciences.

To ensure adequate power, the sample size was a priori 
determined by a power analysis using G*Power (Version 
3.1.9.2; Faul et al., 2009). A sample size of at least 14 par-
ticipants would afford 80% power to detect a medium-high 
attentional effect (Cohen’s f = 0.30) induced by intact BM 
cues, which was found in a previous study with a similar 
design (Shi et al., 2010). We increased the sample size to 16 
per experiment to adequately detect the potential interac-
tions in Experiments 1–3. Meanwhile, a two-tailed power 
analysis based on a medium-high attentional effect (Cohen’s 
d = 0.65) induced by local BM cues (Yu et al., 2020) showed 
that at least 21 participants would be needed to afford 80% 
power. Therefore the sample size was further expanded to 
24 per experiment (Experiments 4 –6) to detect the effect of 
local BM cues.

Stimuli

Stimuli were generated and displayed using MATLAB 
(Mathworks, Inc., Natick, MA, USA) together with the 
Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 
1997). Point-light human BM stimuli with leftward or 
rightward walking direction were adopted from Vanrie and 
Verfaillie (2004). In addition, a point-light walker displayed 
in frontal view was used as the neutral cue. In Experiment 
1, the BM sequence was depicted by 13 white dots, which 
represented the motions of a walker’s head and major joints 
(shoulders, elbows, wrists, hips, knees, and ankles). Each 
gait cycle was 1 s and contained 30 frames. In order to avoid 
participants’ prediction, the initial frame of the point-light 
display was randomized in each trial. In Experiment 2, eve-
rything was the same as in Experiment 1 except that the 
point-light walker was mirror flipped vertically. In Experi-
ment 3, critical biological characteristics of the BM stimuli 
were removed, which served as non-BM sequences. Specifi-
cally, each individual dot of non-BM stimuli moved along a 
path identical to that of the BM stimuli but with a constant 
speed equal to the average speed of the corresponding BM 
dot. And the initial motion phase of each individual dot was 
also randomized. Such manipulations disrupted the natural 
velocity profile and phase relationship of the BM stimuli but 
kept other motion properties of individual dots unchanged 
(Dayan et al., 2007; Y. Wang et al., 2018; Yu et al., 2020). 
Motion sequences in Experiments 1–3 subtended approxi-
mately 2.8º × 6.6º in visual angle. In Experiment 4, the feet 
motion sequences, created by isolating the two point lights 
of ankles from the original BM sequences with leftward 
or rightward walking direction, served as local BM cues. 
They consisted of two fragments that represented the stance 
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phase and swing phase of the foot trajectory. During the 
stance phase, the corresponding dot moves in the opposite 
direction of the walking direction at an approximately con-
stant velocity. During the swing phase, the dot accelerates 
along both the horizontal and the vertical dimensions due 
to muscle activity and gravitational acceleration. It should 
be noted that the feet motion sequences retain local motion 
information only but are devoid of global configuration 
information that is contained in the intact BM sequences. 
The feet motion sequences were vertically mirror flipped 
in Experiment 5, which disrupted the intrinsic biological 
information (e.g., vertical acceleration due to muscle activ-
ity and gravity), whereas the horizontal, translatory motion 
in the stance phase remained unchanged. Each local BM 
sequence in Experiments 4 and 5 was about 2.8º × 0.5º in 
visual angle. In Experiment 6, the inanimate motion cue was 
a dot shifting 0.5º directly to the left or right of the center 
fixation, which produced the illusion of apparent motion. 
In all experiments, the memory items were colored squares 
(0.7º × 0.7º) randomly sampled from a set of eight colors 
(red, orange, yellow, green, cyan, blue, purple, and pink). 
All stimuli were presented against a gray background and 
the viewing distance was about 60 cm.

Procedure

Participants completed a color change detection task with a 
pre-cueing manipulation (Fig. 1). At the beginning of each 
experiment, participants were explicitly told that all cues 
would not predict the location of memory arrays and were 

required to fixate at the central cross throughout the experi-
ment. In Experiment 1, each trial began with fixation on 
a central cross (0.35º × 0.35º). After 1,000 ms, a BM cue 
appeared at the center of the screen. After a stimulus-onset 
asynchrony (SOA) of 500 ms, colored squares were pre-
sented for 200 ms on the left or right side of the BM cue, 
which remained onscreen. Participants had to memorize the 
squares for a recognition test at the end of trial. The squares, 
configured in memory arrays of four (set size 4) or six (set 
size 6), were arranged on one side of an invisible circle 
with a radius of 7º centered on the middle of the screen. It 
was followed by a 1,000-ms WM maintenance interval and 
then a single square probe was presented in the center of 
the screen. Participants were asked to judge whether this 
square had been presented in the memory array via a key 
press within 3,000 ms. There was a 50% probability that 
the square probe was new. Feedback was given to partici-
pants after every trial. Experiments 2 and 3 followed the 
same design and procedure as in Experiment 1, except that 
the BM sequences were shown inverted (Experiment 2) or 
changed to non-BM sequences (Experiment 3). Note that 
the motion properties of non-BM sequences (e.g., average 
speed) were matched with that of BM sequences (see Stimuli 
for more detail). Experiment 4 was similar in procedure to 
Experiment 1, but the feet motion sequences with leftward 
or rightward walking direction instead of the intact BM 
sequences were used as the central cue, and the set size was 
four only. Experiment 5 was consistent with Experiment 4, 
with the only difference being that the feet motion sequences 
were inverted. It should be pointed out that the inverted feet 

Fig. 1  Schematic representation of the experimental paradigm. (A) 
Different types of cues in each experiment. (B) Each trial started 
with a 1,000-ms fixation, followed by a central cue for 500 ms. With 
the cue remaining onscreen, the colored squares were presented for 
200 ms on either the left or right side of the cue. Participants were 
required to remember the presented colors. After a 1,000-ms work-
ing memory (WM) maintenance interval, a single square probe was 

presented in the center of the screen. Participants were asked to judge 
whether this square had been presented in the memory array via a key 
press as quickly as possible while minimizing errors within 3,000 ms. 
Feedback was given to participants after every trial. At the beginning 
of each experiment, participants were explicitly told that the cue was 
not predictive of target location
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motion cues could induce a significant but reverse atten-
tional effect, resulting in a facilitated performance in the 
incongruent condition compared to the congruent condition 
(Wang et al., 2014; Yu et al., 2020). This reverse attentional 
effect seems to arise from the translatory (extrinsic) motion 
in the stance phase (see Stimuli for more detail) that essen-
tially points to the opposite direction of the walking direc-
tion. Experiment 6 began with a 1,000-ms fixation, followed 
by a dot cue displayed at the center of the screen for 750 ms. 
The dot cue then shifted 0.5º horizontally to either the left 
or right and remained on the screen for an additional 100 ms 
(SOA). Subsequently, memory items were presented for 200 
ms in either the left or the right side of the fixation. The fol-
lowing procedure remained the same as that of Experiment 
1. The SOA was shortened to 100 ms to avoid the potential 
inhibition-of-return (IOR) effect (R. M. Klein, 2000; Samuel 
& Kat, 2003; Taylor & Klein, 1998; Wang et al., 2017).

In Experiments 1–3, there were 288 trials in total for each 
participant and for each experiment, with half of trials for 
set sizes of 4 and 6, respectively. The two set-size conditions 
were run in separate blocks and the order was counter-bal-
anced across subjects. Each set-size condition consisted of 
144 trials with 48 congruent trials (the location of memory 
arrays was the same as the cued direction), 48 incongruent 
trials (the location was opposite to the cued direction), and 
48 neutral trials (neither side was cued). In Experiments 4–6, 
participants completed 96 trials consisting of 48 congruent 
trials and 48 incongruent trials with a set size of 4.

In order to confirm that the inanimate low-level motion 
cue (i.e., dot motion) could also induce an attentional ori-
enting effect, all participants in Experiment 6 completed 
an additional task using the traditional target location dis-
crimination paradigm before the formal experiment. In this 
task, a dot cue was first presented at fixation for 750 ms, 
and then shifted 0.5º horizontally to the left or right for 100 
ms (SOA), which was the same as the formal experiment. 
After that, a Gabor patch (1.2º × 1.2º) appeared in either 
the congruent or the incongruent location as a target, and 
the horizontal distance between the centers of the Gabor 
patch and the fixation was 7º. Participants were required to 
indicate the location of the target via a key press as quickly 
as possible while giving priority to response accuracy. The 
motion cue was irrelevant to the task and not predictive of 
target location. There were 80 trials in total with 40 congru-
ent trials and 40 incongruent trials.

Data analysis

In all experiments, trials with reaction times (RTs) less than 
100 ms or greater than 3,000 ms were excluded from the 
statistical analysis (0.23% of all trials). The performance 
of the task was calculated according to the signal detec-
tion theory, in which the detection sensitivity (d’) and the 

response criterion (β) were assessed based on hit and false 
alarm rates (Macmillan & Creelman, 2005). In Experiments 
1–3, a 2 (set size: 4 or 6) × 3 (congruency: congruent, incon-
gruent or neutral) repeated-measures ANOVA was used to 
analyze d’ and β separately. In Experiments 4–6, a paired 
t-test was conducted with the factor of congruency (con-
gruent vs. incongruent). Greenhouse-Geisser correction was 
used when the spherical assumption was violated.

Results

When BM sequences were presented as central cues in 
Experiment 1, the results showed a significant main effect 
of set size for d’, F(1,15) = 43.77, p < .001, ηp

2 = .75, but 
the main effect of congruency was not significant, F(2,30) = 
1.23, p = .308, ηp

2 = .08. More importantly, there was a sig-
nificant interaction between set size and congruency, F(2,30) 
= 3.97, p = .029, ηp

2 = .21. A simple effect analysis for d’ 
was carried out to test the significant interaction. When the 
set size was 4, WM performance in the congruent condi-
tion (M = 1.62, SD = 0.53) was significantly better than 
that in the incongruent condition (M = 1.26, SD = 0.74), 
t(15) = 2.36, p = .032, Cohen’s d = 0.59, 95% confidence 
interval (CI) for the mean difference [0.03, 0.67], and the 
difference between the congruent and the neutral conditions 
(M = 1.32, SD = 0.59) was marginally significant, t(15) = 
1.94, p = .072, Cohen’s d = 0.49, 95% CI for the mean 
difference [-0.03, 0.62] (Fig. 2A). No significant difference 
was found between the incongruent and the neutral condi-
tions, t(15) = -0.63, p = .540, Cohen’s d = 0.16, 95% CI for 
the mean difference [-0.25, 0.14]. The results indicated that 
non-predictive BM cues improved WM and increased the 
likelihood of remembering items presented at the location 
cued by walking direction of BM when the set size was 4. 
This effect appeared to be driven by enhanced engagement 
rather than delayed disengagement, which is consistent with 
previous studies (Friesen & Kingstone, 1998; Gregory & 
Jackson, 2017). The observed modulation effect was not due 
to a difference in the response criterion, since participants’ β 
values were not significantly different between the congru-
ent condition (M = 1.68, SD = 1.18) and the incongruent 
condition (M = 1.37, SD = 0.89) when the set size was 4, 
t(15) = 1.34, p = .199, Cohen’s d = 0.34, 95% CI for the 
mean difference [-0.18, 0.81]. When the set size was 6, d’ 
for the congruent condition (M = 0.69, SD = 0.53) did not 
significantly differ from that for the incongruent condition 
(M = 0.74, SD = 0.44), t(15) = -0.31, p = .759, Cohen’s d 
= 0.08, 95% CI for the mean difference [-0.35, 0.26]. No 
significant difference was found between the congruent and 
the neutral conditions (M = 0.89, SD = 0.48), or between 
the incongruent and the neutral conditions, ps > .1. Fur-
thermore, there was no significant difference observed for β 
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(congruent: M = 1.19, SD = 0.41; incongruent: M = 1.17, 
SD = 0.33; neutral: M = 1.27, SD = 0.53), ps > .1. Taken 
together, these results implied that the observed modula-
tion effect might be influenced by task difficulty or resource 
demands (Lavie et al., 2004).

When the BM cues were mirror flipped vertically in 
Experiment 2, the main effect of set size for d’ was sig-
nificant, F(1,15) = 29.77, p < .001, ηp

2 = .67, while the 
main effect of congruency was not significant, F(2,30) = 
1.45, p = .250, ηp

2 = .09, which were similar to the results 
obtained in Experiment 1. Conversely, no significant inter-
action effect of set size and congruency was found, F(2,30) 
= 1.25, p = .301, ηp

2 = .08 (Fig. 2B). These results showed 
that the observed modulation effect vanished when the BM 
cues were shown inverted, suggesting that this effect did not 
arise from the processing of low-level features.

In order to examine whether the observed modulation 
effect was indeed triggered by the biological characteristics 
of the BM signals, we conducted another control experiment 
(Experiment 3) in which non-BM sequences were adopted 
as central cues. Results showed that the main effect of set 
size for d’ was significant, F(1,15) = 55.34, p < .001, ηp

2 
= .79, while the main effect of congruency was not sig-
nificant, F(2,30) = 0.40, p = .674, ηp

2 = .03, and there was 
no significant interaction between set size and congruency, 
F(2,30) = 1.42, p = .258, ηp

2 = .09 (Fig. 2C). These findings 
suggest that the modulation effect on WM was essentially 
triggered by the biological characteristics contained in the 
motion signals.

To further investigate whether the observed modulation 
effect could be induced by local BM signals that were 
deprived of global configuration, we adopted feet motion 
sequences in Experiment 4. Results showed that WM per-
formance in the congruent condition (M = 1.63, SD = 0.55) 
was significantly more accurate than that in the incongruent 
condition (M = 1.33, SD = 0.57), t(23) = 2.59, p = .016, 

Cohen’s d = 0.53, 95% CI for the mean difference [0.06, 
0.54], suggesting that local BM cues without global configu-
ration could still influence WM performance (Fig. 3). This 
significant effect of congruency for d’ could not be attributed 
to a difference in the response criterion either, as the β under 
the congruent condition (M = 1.42, SD = 1.52) was not dif-
ferent from that under the incongruent condition (M = 0.98, 
SD = 0.33), t(15) = 1.55, p = .136, Cohen’s d = 0.32, 95% 
CI for the mean difference [-0.15, 1.03]. The magnitude of 
the modulation effect (calculated as the difference in mean d’ 
obtained under the incongruent condition vs. that under the 
congruent condition divided by their sum, d�incongruent−d�congruent

d�incongruent+d�congruent

 ) 

A B C

Fig. 2  Results from Experiments 1–3. (A) When biological motion 
(BM) sequences were presented as central cues (Experiment 1), work-
ing memory (WM) performance in the congruent condition was sig-
nificantly more accurate than that in the incongruent condition only 

with a set size of 4. (B, C) No significant difference was observed 
when the BM stimuli were mirror flipped vertically (Experiment 2), 
or when critical biological characteristics of the BM stimuli were 
removed (Experiment 3). Error bars show standard errors. *p < .05

Fig. 3  Results from Experiments 4 and 5. When feet motion 
sequences were presented as central cues (Experiment 4), working 
memory performance in the congruent condition was significantly 
more accurate than that in the incongruent condition. This effect van-
ished when stimuli were mirror flipped vertically in Experiment 5. 
Error bars show standard errors. *p < .05
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induced by feet motion cues was not different from that 
induced by intact BM cues when the set size was 4, t(38) = 
-0.60, p = .552, Cohen’s d = 0.19, 95% CI for the mean dif-
ference [-0.19, 0.11]. These results indicated that the modu-
lation effect on WM did not necessarily depend on global 
configuration and could be triggered by local motion signals 
alone. However, no significant difference was found when 
the feet motion cues were mirror flipped vertically in Experi-
ment 5 (congruent: M = 1.59, SD = 0.71; incongruent: M = 
1.51, SD = 0.51), t(23) = 0.54, p = .595, Cohen’s d = 0.11, 
95% CI for the mean difference [-0.20, 0.34], suggesting that 
the observed modulation effect critically depended on 
upright but not inverted local BM signals. Combined with 
the evidence that inverted feet motion can also induce atten-
tional effects (see Methods for more detail), our finding here 
indicated that the observed modulation effect was highly 
tuned to BM but not to inanimate motion signals.

In Experiment 6, we employed another inanimate motion 
cue to further verify that the observed modulation effect on 
WM was specifically induced by biological motion signals. 
The traditional target location discrimination task conducted 
before the formal experiment showed that the dot motion cue 
could reliably orient attention to a laterally presented Gabor 
patch (congruent: MRT = 404.30 ms, SD = 91.81 ms; incon-
gruent: MRT = 428.07 ms, SD = 87.79 ms), t(23) = -5.97, p 
< .001, Cohen’s d = 1.22, 95% CI for the mean difference 
[-32.00, -15.54], consistent with previous studies (Gregory 
& Jackson, 2017; Tipples, 2002, 2008). However, the modu-
lation effect was not found in the WM task (congruent: M = 
1.70, SD = 0.55; incongruent: M = 1.83, SD = 0.59), t(23) 
= -1.00, p = .329, Cohen’s d = 0.20, 95% CI for the mean 
difference [-0.39, 0.14]. Overall, these findings together 
with Experiments 4 and 5 demonstrated that local BM cues 
improved WM performance, while inanimate motion cues 
(i.e., inverted feet motion and dot motion) did not, despite 
all of them being able to direct attention.

Discussion

The walking direction of biological entities can induce a fast 
and robust reflexive attentional orienting effect, a phenom-
enon known as social attention (Klein et al., 2009; Num-
menmaa & Calder, 2009; Shi et al., 2010). In the current 
study, we demonstrated that such a fundamental ability could 
further affect higher-level cognitive processes. Specifically, 
BM sequences as pre-cues modulated the encoding process 
and improved WM performance. This improvement disap-
peared when the BM cues were shown upside-down, which 
reflected an inversion effect in BM processing (Chang & 
Troje, 2009; Troje & Westhoff, 2006; Vallortigara & Rego-
lin, 2006). This effect also vanished when critical biological 
characteristics of the BM stimuli were removed, although 

the moving trajectories and average speed of each dot 
remained the same. Moreover, local BM cues, consisting of 
only the two point lights of the ankles without global con-
figuration, still significantly influenced WM performance. In 
contrast, inanimate motion cues such as inverted feet motion 
and dot motion had no significant impact on WM, although 
they also elicited attentional effects. These findings together 
demonstrate that the biological characteristics embedded in 
the motion signals independent of global configuration can 
modulate visual WM, with the effect specific to life motion 
signals rather than inanimate motion cues.

A similar modulation effect on WM was observed with 
another social cue by prior researchers (Gregory & Jackson, 
2017). They adopted eye gaze as a non-predictive central 
cue and found that the gaze-induced social attention modu-
lated WM significantly. It has been demonstrated that both 
eye gaze and BM stimuli can trigger an analogous social 
attention effect (Friesen & Kingstone, 1998; Langton et al., 
2000; Shi et al., 2010; Yuan et al., 2022), and they share 
common genetic and neural mechanisms, implying the exist-
ence of a “social attention detector” in the human brain (Ji 
et al., 2020; Wang et al., 2020). Based on these observa-
tions, the similar modulation effects of BM and eye gaze on 
WM process suggest a general and shared “social attention 
detector” from a high-level cognitive function perspective. 
Furthermore, our study provides new evidence on the long-
standing debate regarding whether or not social attention is 
distinct from non-social attention (Friesen et al., 2004; Ji 
et al., 2022; Joseph et al., 2015; Sato et al., 2010; Tipples, 
2002, 2008). Our study demonstrated that BM signals spe-
cifically induced a modulation effect on WM, which was not 
found with non-social cues. Moreover, no modulation effect 
on WM was observed when the uninformative non-social 
cue (i.e., arrow) was adopted in the previous study (Gregory 
& Jackson, 2017), paralleling our findings obtained with 
inverted feet motion cues and dot motion cues. From the 
above-mentioned evidence, we can infer that the processing 
of social cues may be distinct from that of non-social cues. 
Despite the fact that both social and non-social cues can 
elicit attentional orienting, they exert differentiated effects 
on higher-level cognitive processes. Altogether, our study 
shed new light on the distinctiveness of social attention in 
high-level cognitive functions.

Findings of the current study also further our understand-
ing of the relationship between attention and WM. Attention 
is closely related to WM, and the effect of attention on WM 
has been widely discussed (Baddeley, 1993; Kane et al., 
2001; Oberauer, 2009). Previous studies suggest that allo-
cating attention to a location before stimulus onset enhances 
the detection and processing of cued items, facilitating their 
encoding into WM (Carrasco et al., 2004; Pestilli & Car-
rasco, 2005). While non-social cues have been shown to 
improve memorization of targets displayed at cued locations, 
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they are typically predictive (Griffin & Nobre, 2003; Li & 
Saiki, 2015; Tanoue et al., 2013). It may involve top-down 
control of attention, which contributes to encoding and 
maintaining items in WM (Gazzaley & Nobre, 2012; Jacob 
et al., 2015). However, in our study, the BM cues were not 
predictive, and participants were informed of this before the 
experiments, ruling out top-down attentional control as a 
factor in the observed modulation effects on WM. Notably, 
BM-mediated orienting represents a new form of spatial 
attention and is distinct from traditionally identified types of 
covert attention (i.e., exogenous and endogenous) (Ji et al., 
2020; Liu et al., 2021; Wang et al., 2020). The fundamental 
social attention ability allows humans to gain insight into the 
inner state of others and identify important events in their 
environment (Nummenmaa & Calder, 2009). The present 
study, for the first time, showed that this unique social atten-
tion induced by BM cues could specifically contribute to the 
processing and encoding of information into WM, offering 
new insight into the interactions between attention and WM.

It is worth noting that the modulation effect on WM could 
be extended to local BM stimuli without any global configu-
ration, which parallels previous findings on the perception of 
local BM cues (Troje & Westhoff, 2006; Wang et al., 2010; 
Wang & Jiang, 2012). The motion of the feet in BM walking 
direction perception has been highlighted by some research-
ers as playing a distinctive role (Chang & Troje, 2009; Cheng 
et al., 2022; Gurnsey et al., 2010; Johnson, 2006; Saunders 
et al., 2009). It has been demonstrated that feet motion cues 
can not only be processed independent of global configura-
tion, but also induce robust reflexive attentional orienting 
even without observers’ subjective awareness of their bio-
logical nature (Wang et al., 2014). Therefore, it has been 
proposed that there might exist an intrinsic brain mechanism 
specialized to life motion signals, which is sensitive to the 
direction of the limbs of another moving creature (i.e., life 
motion detector) (Cheng et al., 2023; Ma et al., 2022; Troje 
& Westhoff, 2006; Wang et al., 2010, 2014; Wang & Jiang, 
2012; Wang et al., 2018, 2022; Yu et al., 2020). In the pre-
sent study, we examined the processing of feet motion cues 
by combining a WM task, and found that local BM stimuli 
could modulate WM performance. Our findings extended 
prior social attention studies and further demonstrated that 
“life motion detector” could also play a special role in higher-
level cognitive processes (i.e., WM). In addition to BM, from 
a more comprehensive view, there are several other animate 
motion signals, such as self-propelled motion, change of 
speed, and unpredictability of motion (Di Giorgio et al., 
2021; Lemaire et al., 2022; Lorenzi et al., 2017; Rosa-Salva 
et al., 2016; Vallortigara & Losi, 2021). Future studies can 
adopt these animate signals to further explore whether they 
can operate in higher-order cognitive processes.

In summary, the current study demonstrates that non-pre-
dictive BM signals independent of global configuration can 

modulate WM performance and improve memory of items 
presented at the BM-cued location. However, such modula-
tion effect cannot be observed with inanimate motion cues 
(i.e., inverted feet motion and dot motion). These findings 
together support for the existence of a “life motion detector” 
in the human brain, and suggest that the specialized atten-
tion mechanism tuned to life motion signals can penetrate 
to higher cognitive processes.
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