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a  b  s  t  r  a  c  t

It  has  long  been  debated  whether  attention  alters  the  categorical  selectivity  in  regions  such  as  the  fusiform
face  area  (FFA)  and  the  visual  word  form  area  (VWFA).  We  addressed  this  issue  by examining  whether  the
spatial pattern  of  neural  representations  for  certain  stimulus  categories  in  these  regions  would  change
under  different  attention  conditions.  Faces,  Chinese  characters,  and  textures  were  presented  in a block
design fMRI  experiment  where  participants  in  different  runs  attended  to  the  stimuli  under  different  condi-
tions  of  attention.  After  localizing  regions  of  interest  (ROIs)  in FFA  and  VWFA  using  general  linear  models,
we  performed  spatial  pattern  analyses  to examine  both  within-  and  cross-condition  classification  in  these
ROIs. The  within-condition  results  replicated  previous  findings  showing  significant  classification  accu-
racy  reduction  when  there  was  less  attention  compared  with  more  attention.  Critically,  cross-condition
classification  in  both  FFA and  VWFA  revealed  significantly  above-chance  accuracy  for  all  stimulus  cat-
ontrast-to-noise ratio egories,  suggesting  similar  spatial  neural  representations  across  different  attention  conditions.  Further
strengthening  this  conclusion,  when  the  contrast-to-noise  ratio  (CNR)  of  the signals  was  adjusted  to
increase  signal  strength,  cross-condition  classification  accuracy  for faces  in  FFA  and  for  Chinese  char-
acters  in  VWFA  improved  significantly,  even  approaching  within-condition  accuracy.  This indicates  that
attention  does  not  modulate  the  spatial  pattern  of  neural  representations  involved  in  category  selectivity,

al  str
but  only  changes  the  sign

. Introduction

Attention plays an important role in visual information process-
ng. One important question about attention is to understand how
t modulates neural representations in visual regions demonstrat-
ng category-selectivity. Functional magnetic resonance imaging
fMRI) studies have revealed attentional modulation of the mag-
itude of the blood oxygen level dependence (BOLD) responses
howing enhanced activations for attended than less-attended
isual stimuli (Murray & Wojciulik, 2004; Wojciulik, Kanwisher,

 Driver, 1998). More recently, several studies adopted a new

pproach of Multi-Voxel Pattern Analysis (MVPA, Haynes & Rees,
005; Kamitani & Tong, 2005) which is sensitive to the spatial pat-
ern in response to the stimulus content (Norman, Polyn, Detre,
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& Haxby, 2006). These studies demonstrated that the within-
condition classification accuracies in the fusiform face area (FFA)
and the parahippocampal place area (PPA) were critically depen-
dent on attention levels (MacEvoy & Epstein, 2009; Reddy &
Kanwisher, 2007; Reddy, Kanwisher, & VanRullen, 2009; Sterzer,
Haynes, & Rees, 2008). Nevertheless, the classification performance
for the preferred stimulus categories (i.e., faces for the FFA and
houses for the PPA) were still significantly above chance even when
the stimuli were not attended, suggesting that the category selec-
tivity was  somehow preserved.

Although these studies indicate that attention modulates cat-
egory specificity, the underlying mechanism of such modulation
remains to be explored. One possible computational model where
attention affects category specificity is that the population-coded
neural representation may  be “diffuse” under limited attention
but gets sharpened (becoming more “sparse”) when there is more
attention to the stimuli. In support of such a model, some fMRI

studies showed that orientation coding under attended and un-
attended conditions engaged different spatial patterns of activation
in lateral occipital cortex and primary visual cortex (Fischer &
Whitney, 2009; Murray & Wojciulik, 2004). In contrast, some other

dx.doi.org/10.1016/j.neuropsychologia.2012.01.026
http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
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tudies support a different model where attention changes the
mplitude of neural activity but not the neural population coding
pecific categories of stimuli (McAdams & Maunsell, 1999; Treue &
artinez Trujillo, 1999; Treue & Maunsell, 1999). Clearly, the two
odels have opposite predictions as to whether the spatial pattern

esponsible for coding specific categories remains the same under
ifferent attention conditions.

The current study addressed this issue by examining the multi-
oxel pattern classification performance under different attention
onditions. In one condition, participants were asked to make some
ne judgments about the stimuli (e.g., faces, textures, and charac-
ers) requiring a high level of attention directed to the stimuli. In
he other condition, they paid much less attention to these stimuli
s they only need to discriminate these stimuli from some visu-
lly very different items. Critically, we performed cross-condition
lassifications by training classifiers with the responses in one con-
ition and testing its classification performance in the other, in
rder to examine whether there are similar spatial patterns of neu-
al coding of category selectivity between these two conditions.

Furthermore, we introduced a contrast-to-noise ratio (CNR)
anipulation in the cross-condition classifications to test whether

he CNR is a factor relevant to classification performance under
ifferent attention conditions. Although it could be crucial for
he interpretation of MVPA performance, only a few studies have
xamined this issue (e.g., Smith, Kosillo, & Williams, 2011). Specifi-
ally, if attention modulates the magnitudes rather than the spatial
atterns of the neural activities, the cross-condition classification
ccuracy should be well above the chance level, and, more impor-
antly, could be monotonically increased by amplifying the CNR
f the data. Alternatively, if attention changes the spatial patterns
f the neural responses, one would only expect a close-to-chance
ccuracy in such cross-condition classification, and the increase of
he CNR would not significantly improve the performance of the
ross-condition classification.

Other than FFA, we also examined the visual word from area
VWFA), another region in the ventral visual object pathway known
o be sensitive to written words (Cohen & Dehaene, 2004; Cohen
t al., 2000, 2002; McCandliss, Cohen, & Dehaene, 2003), and pre-
umably at the similar functional level as the FFA in the visual
rocessing hierarchy. Different from FFA, the functional selectiv-

ty of the VWFA for visual words is still debated (Baker et al.,
007; Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Indefrey
t al., 1997; Reinke, Fernandes, Schwindt, O’Craven, & Grady, 2008;
agamets, Novick, Chalmers, & Friedman, 2000). Inspection of both
he FFA and the VWFA using the MVPA approach may  from a dif-
erent perspective help to inform whether the VWFA has similar
unctional specialization as the FFA.

. Methods

.1. Participants

Eleven native Chinese (Mandarin) speakers participated in the study (6 females,
 males; mean age = 22.6 years, ranged from 20 to 23). All were right-handed col-

ege students (assessed by a Chinese handedness questionnaire described in Li,
983),  with normal or corrected-to-normal vision and free of neurological diseases
r  psychiatric disorders. None majored in linguistics or related disciplines. Written
nformed consent was  obtained from each participant before the experiment follow-
ng  a protocol approved by the IRB of the Institute of Psychology, Chinese Academy
f  Sciences.

.2. Materials and procedures

Three categories of stimuli, including faces, textures and Chinese characters,
ere used in the experiment. Each category contained 80 images. The faces consisted
f  40 female and 40 male faces; the textures consisted of 40 coarse- and 40 fine-
rained textures; and the Chinese characters consisted of high frequency characters,
0  with an up-down structure and 40 with a left-right structure.

The experiment consisted of two runs, one for the High Attention condition
HighAtt) condition, and one for the Low Attention condition (LowAtt). The run
ia 50 (2012) 862– 868 863

order was  counter-balanced across-subjects. For the first task, participants were
asked to press a button on a button-box when they saw some stimuli (male faces,
fine  grained textures, or up-down structured characters) but not to respond other-
wise. For the second task, 20% of the stimuli were randomly replaced with nonsense
geometrical shapes, and participants were asked to respond to these oddball images
with a button press but not to respond otherwise. Both speed and accuracy were
emphasized. As shown in Fig. 1, each run consisted of 4 replications of 3 blocks, with
one  block for each of the three stimulus categories. The block order for the three cat-
egories was pseudo-randomized. Each block lasted 20 s with a 20 s fixation interval
between successive blocks. Each block involved the presentation of 20 images (each
for 200 ms), interleaved with a central fixation cross shown for 800 ms.

2.3. MRI data acquisition

All images were acquired with a GE 3.0 T Signa MRI  scanner (Milwaukee, Wis-
consin, USA). During the scan, a tight cushion was used to immobilize the head and
reduce head motion. A single-shot T2* weighted gradient echo planar sequence was
used to acquire the functional images with the following parameters: TR/TE/flip
angle = 2000 ms/40 ms/90◦ , FOV = 240 mm × 240 mm,  matrix = 64 × 64, slice thick-
ness  = 4 mm,  gap = 0 mm.  Twenty contiguous axial slices covering the occipital and
temporal lobes were acquired. After the functional scans, high-resolution 3D images
were acquired using a spoiled gradient echo sequence (TR = 6.8 ms,  minimal TE, flip
angle = 12◦ , FOV = 280 mm × 280 mm,  matrix = 256 × 256, slice thickness = 1 mm).

2.4. Data analysis

2.4.1. Functional localizer
The functional data was preprocessed using AFNI (Analysis of Functional Neural

Image, Cox, 1996). The two functional runs were preprocessed separately, starting
from head motion corrections, and followed by co-registration of the anatomical
image to the functional images, linear trend correction, and time course standardiza-
tion involving subtraction of the mean signal and division by the standard deviation
of  the entire time course yielding a Z-score for each time point. Finally, the data
were spatially smoothed with a Gaussian kernel of 5 mm FWHM (full width at half
magnitude). Note that the data were not transformed into the Talairach coordinate
system.

A  multiple regression analysis was then conducted for each individual partici-
pant, with three regressors modeling BOLD responses to the three different stimuli
categories (faces, characters, and textures), using the ‘BLOCK’ model in AFNI. Six
head-motion parameters derived from motion corrections and four parameters used
to  estimate the polynomial signal baseline were included as nuisance regressors.
The  20-s fixation periods were modeled as the baseline condition. The HighAtt and
LowAtt runs were first concatenated in the regression analysis to localize the VWFA
and FFA. The VWFA was defined within the left fusiform gyrus based on a contrast of
the characters against the other two stimulus categories (i.e., character – 0.5 × face
–  0.5 × texture), and the FFA was defined within the right fusiform gyrus based on
a  contrast of the faces against the other two categories (i.e., face – 0.5 × texture –
0.5  × character). The two  ROIs, referred to as VWFA H L and FFA H L, were localized
individually for each participant using a statistical criterion q < 0.05 (false discovery
rate), and used in the within-condition classification analyses to replicate findings
in  previous studies. Two  more ROIs, referred to as VWFA H and FFA H were defined
following the same procedure except using only the HighAtt run data to make a rel-
ative independent localizer (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009; Vul,
Harris, Winkielman, & Pashler, 2009) for further cross-condition classification anal-
yses. The mean coordinates and volumes (x, y, z, voxels) were (37.9, −53.7, −14.3,
52)  and (37.9, −52.3, −14.8, 46) for FFA H L and FFA H, and (−42.5, −57.6, −7.4, 44)
and (−43.8, −55.6, −8.8, 48) for VWFA H L and VWFA H.  Fig. 2 shows the location
and extent of such ROIs for a representative participant (see Supplementary Table
S1  for the same information of all participants).

2.4.2. Multi-voxel pattern analysis (MVPA)
Preprocessing for the MVPA was the same as in the GLM analysis except that no

spatial smoothing was conducted. The MVPA analysis involved three parts.

(1) The data from the HighAtt and LowAtt runs were analyzed separately to
obtain within-condition classification accuracies in the predefined FFA H L and
VWFA H L ROIs. To avoid effects of signal ramping at block onsets and offsets,
the stimuli blocks (sequences of 0 s and 1 s) were first convolved with a hemody-
namic response model and then thresholded at a magnitude at 0.8 (Coutanche,
Thompson-Schill, & Schultz, 2011). Nine time points in the plateau of each block
(from 7 s to 24 s after the block-onset), were selected and then used in the fol-
lowing MVPA analysis. Back-propagation neural network implemented in the
MVPA toolbox (Detre et al., 2006) was  used to classify the stimulus categories. To
control for voxel number effects (Reddy & Kanwisher, 2007), 18 voxels from each
ROI were randomly sampled to perform a four-fold (leave one block out) cross-

validation analysis. Specifically, the signals from the 18 voxels were arranged
into an 18-dimension vector (pattern) with each element being a Z-score of a
voxel. Thus, a total of 36 such patterns (9 in each block × 4 blocks) were obtained
for  each of the stimuli categories. For the four-fold cross-validation, 81 (27 × 3) of
the  patterns (from nine blocks, three for each category) were used as the training
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Fig. 1. The experimental paradigm and example stimuli. Attention was manipulated to include a High Attention condition (HighAtt) and a Low Attention condition (LowAtt).
The  figure shows the HighAtt condition. There were 4 replications of 3 block groups, each block for one of the three stimulus categories. The length of each block was 20 s
w d by a
o the de

(

(

nificant effect of stimulus category (F(2, 30) = 8.39, p < 0.001). Paired
ith  a 20 s fixation between blocks. Each image was presented for 200 ms,  separate
f  the stimuli were randomly replaced with nonsense geometric images serving as 

set,  while the remaining 27 (9 × 3) patterns (from the other three blocks, one
for  each category) were used as the test set. The back-propagation classifiers
were then trained to classify the patterns into three categories by learning the
relationships between the patterns and their category labels. The classification
accuracies were obtained by applying the trained classifiers to the test set. Quan-
titatively, the accuracy for each category was defined as the proportion of the
patterns that were classified into the correct category (including true positive
and true negative cases). By this definition, a non-informative pattern would
have one third of chance to be classified into each of the three stimulus cate-
gories, yielding a chance-level classification accuracy at 33.3%. The training and
test  sets were then reconstructed with different combinations of blocks, and
the  above classification was repeated four times. The final classification accura-
cies were obtained by averaging the accuracies from the four cross-validations.
This  procedure was repeated for 100 times with different sets of voxels, and the
resulting performance accuracies were further averaged (Reddy & Kanwisher,
2007).  Paired-sample t-tests were then conducted to examine group-level per-
formance differences between the HighAtt and LowAtt runs for each stimulus
category.

2)  A cross-condition classification was performed between the HighAtt and LowAtt
runs using the FFA H and VWFA H ROIs to avoid artificial enhancement of classi-
fication performance when using information from both runs. To match with the
within-condition classification, three blocks from the HighAtt run were used to
train the classifiers, while the other block from the LowAtt run as the test dataset.
The  same algorithm as described above was  applied in the classification except
the  four-fold cross-validation. The roles of the two runs were then switched.

Classification accuracies from the two iterations were averaged to represent
the cross-condition classification performance (two-fold cross-validation).

3)  In this analysis, cross-condition classifications were performed at different lev-
els  of CNR. The fitted signal for the LowAtt condition (from the GLM analysis)
was  multiplied with an amplifying factor (ranging from 1 to 3.8 with a step
n 800 ms  fixation. The setup of the LowAtt condition was  the same except that 20%
tection targets.

of 0.4) and then added with the residuals (see Fig. S1 in the Supplementary
Materials for a flowchart)  to produce a signal with different levels of CNR. Cross-
condition classification was  performed using the CNR-adjusted LowAtt runs as
the  training dataset and the HighAtt runs as the test dataset. As in the second
analysis described above, only three blocks from each CNR-adjusted LowAtt run
were used in training the classifiers, and the analysis was repeated four times
to  cover all possible combinations when selecting three blocks from four.

3. Results

3.1. Behavior results

For all participants in the LowAtt condition, the hit rate of
the oddball detection was  above 97%, and the false alarm rate
was  below 4%. In the HighAtt condition, the mean hit and false
alarm rates were 96.6% and 4.3% for faces, 99.5% and 2.3% for
textures, and 100% and 3.6% for characters. The hit rate was signif-
icantly lower for faces than for characters (t(10) = −4.33, p < 0.02).
The reaction times (RTs) to faces, textures, and characters were
435 ± 41 ms,  382 ± 50 ms, 463 ± 41 ms,  respectively, showing a sig-
t-tests revealed that response to textures was significantly faster
than to faces (t(10) = 4.29, p < 0.002) and characters (t(10) = 6.36,
p < 0.001), and response to faces was  faster than to characters
(t(10) = 2.87, p < 0.02).
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Fig. 2. The location and extent of the FFA (blue) and VWFA (red) ROIs (regions of interest) in a representative participant, defined in two  ways. The FFA H and VWFA H ROIs
were  defined only using the HighAtt run data, while the FFA H L and VWFA H L ROIs were defined using the concatenation of the HighAtt and LowAtt runs. VWFAs were
based  on a contrast between characters and faces and textures (character – 0.5 × face – 0.5 × texture) within the left fusiform gyrus. FFAs were based on a contrast between
f e righ
c article

3

c
t
V

aces  and characters and textures (face – 0.5 × texture – 0.5 × character) within th
luster size from 25 to 100 voxels. (The reader is referred to the web  version of the 

.2. Comparison of signal changes
At group level, signal changes between the HighAtt and LowAtt
onditions were compared. For both the FFA H L and VWFA H L,
heir preferred stimulus categories (faces for FFA, characters for
WFA) showed enhanced activations in the HighAtt condition
t fusiform gyrus. The statistical criteria were q < 0.05 (false discovery rate) with a
 for a colored figure.)

than the LowAtt condition (FFA: t(10) = 6.05, p < 0.001; VWFA:
t(10) = 5.28, p < 0.001), whereas their non-preferred categories

showed no different activations across condition (FFA: charac-
ter, t(10) = 1.43, p > 0.18; texture, t(10) = 0.55, p > 0.50; VWFA:
face, t(10) = 0.73, p > 0.49; texture, t(10) = −0.19, p > 0.85, see
Fig. 3).
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ig. 3. Signal changes in the two attention conditions. In both the FFA (A) and VWF
ignificant differences across the two conditions.

.3. MVPA results

For easy descriptions, the within-condition classifications in the
ighAtt and LowAtt conditions were referred as the H-H and L-L
lassifications, the cross-condition classifications as the H-L and L-

 classifications, and the cross-condition classification using the
NR-adjusted data of the LowAtt runs for training and the HighAtt
uns for testing as the L-H (CNR) classification.

As shown in Fig. 4, in both the FFA H and the VWFA H
OIs, classification accuracies for faces and characters were
ignificantly higher in the H-H classification than in the L-L clas-
ification (FFA: face, t(10) = 4.86, p < 0.001; character, t(10) = 11.57,

 < 0.001; VWFA: face, t(10) = 8.98, p < 0.001; character, t(10) = 5.84,
 < 0.001). Still, the L-L classification accuracies for faces in the FFA
t(10) = 8.54, p < 0.001) and for characters in the VWFA (t(10) = 4.92,

 < 0.001) were significantly above the chance level (33.33%). For
he L-L classification accuracies, the FFA showed above-chance
ccuracy for its non-preferred stimuli as well, i.e., characters
t(10) = 5.82, p < 0.001) and textures (t(10) = 8.09, p < 0.001), while
he VWFA showed above-chance accuracy for textures (t(10) = 3.49,

 < 0.006) but not for faces (t(10) = 1.06, p > 0.30). The results for the
extures are shown in Fig. 4 without further discussion as we are
ot interested in the representations of textures in either the FFA
r VWFA.
The cross-condition classification analyses showed that the
ccuracies for both faces and characters were significantly above
hance in both the FFA and VWFA (FFA: face, t(10) = 14.76, p < 0.001;
haracter, t(10) = 11.70, p < 0.001; VWFA: face, t(10) = 6.18,

ig. 4. Accuracies for the within-condition classifications (H-H, L-L) and the cross-conditi
-H  classification for faces and characters were significantly higher than that of L-L class
nd  for characters (p < 0.001) in the VWFA were significantly above chance level (33.3
nd  characters were significantly above chance level in both the FFA and VWFA (p < 0.0
lassifications with higher accuracy in for faces than for characters in FFA (p < 0.001), and
tandard deviations.
 only the preferred stimuli categories (faces for FFA, characters for VWFA) showed

p < 0.001; character, t(10) = 6.55, p < 0.001). The H-L and L-H
classification accuracy for faces was  significantly higher than
that for characters in the FFA (t(10) = 4.45, p < 0.001), while in the
VWFA, the accuracy for characters was significantly higher than
for faces (t(10) = 1.94, p < 0.04; see Fig. 4).

The above results indicate the spatial patterns representing
faces and characters may  be similar under different attention con-
ditions in both the FFA and the VWFA. Testing this conclusion,
the next analysis checked whether CNR level could explain the
difference of classification performance under the two attention
conditions (high vs. low). Fig. 5 shows the L-H (CNR) classifica-
tion accuracies as a function of the CNR amplifying factor within
the FFA H and the VWFA H. In the FFA, the L-H (CNR) accuracies
for both faces and characters increased with the level of CNR. The
initial L-H (CNR) classification accuracy for faces was significantly
lower than in the H-H classification (t(10) = −3.81, p < 0.003, the
first bar and the solid horizontal line in Fig. 5A). However, when
the CNR amplifying factor reached 1.4, the L-H (CNR) classification
accuracy for faces was increased to be no different from the H-H
classification (t(10) = 1.13, p > 0.30). Furthermore, when the ampli-
fying factor was bigger than 2.2, the L-H (CNR) accuracies for faces
were even higher than in the H-H condition (t(10) = 2.65, p < 0.03).

Similarly, for characters, the initial L-H (CNR) accuracy was
significantly lower than in the H-H classification (t(10) = −3.85,

p < 0.003, the second bar and the dotted horizontal line in Fig. 5A),
but it was significantly increased as the amplifying factor was
increased. When the factor reached 1.4, the L-H (CNR) accuracy
for characters was  similar as for the H-H classification (t(10) = 1.42,

on classifications (H-L and L-H). In both the FFA (A) and VWFA (B), the accuracies of
ification (p < 0.001). The L-L classification accuracies for faces in the FFA (p < 0.001)
3%). The cross-condition classification showed that the accuracies for both faces
01). The category-preference of both regions was  retained in the cross-condition

 for characters than for faces in VWFA (p < 0.05). Error bars indicate across-subject
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ig. 5. Cross-condition classification accuracies for faces and characters increased
ines  indicate the H-H classification accuracies for faces and characters in the two R

 > 0.19). In the VWFA, the initial L-H (CNR) accuracy for char-
cters was significantly lower than in the H-H classification
t(10) = −11.04, p < 0.001, the second bar and the dotted horizontal
ine in Fig. 5B), but when the factor reached 2.2, the difference was
o longer present (t(10) = 1.64, p > 0.13). For faces, the initial L-H
CNR) accuracy was significantly lower than in the H-H classifica-
ion (t(10) = −3.50, p < 0.006, the first bar and the solid horizontal
ine in Fig. 5B), but the difference was no longer there when the fac-
or reached 1.8 (p > 0.10). In summary, the L-H (CNR) accuracies for
aces and characters increased monotonically with the CNR level in
oth ROIs, and were comparable to the H-H accuracies when the
NR level was high enough.

. Discussion

Visual processing in the human brain involves highly special-
zed coding mechanisms to handle the vast amounts of visual input.
ategory selectivity is one manifestation of such general princi-
les. Attention provides a different type of mechanism to enhance

nformation processing efficiency by selecting what is relevant and
gnoring what is irrelevant. To examine the interaction between
ategory selectivity and attention, the present study used the multi-
oxel pattern analysis to examine how attention modulates neural
oding in two well-known brain regions showing category selec-
ivity, i.e., the FFA and the VWFA. Specifically, the issue addressed
as whether different levels of attention alter the spatial pattern of

he neural representations for faces and Chinese characters in the
FA and VWFA, respectively. A related issue examined was whether
he Contrast Noise Ratio affects MVPA performance under different
ttention conditions.

With the same set of critical stimuli, we manipulated the task
nstructions to create two levels of attention to the test stimuli,

 High Attention condition and a Low Attention condition. Our
esults showed that, compared with the high attention condition,
oth the BOLD responses and the within-condition classification
erformance were significantly reduced in the low attention con-
ition. The results are consistent with previous findings (Murray &
ojciulik, 2004; Reddy & Kanwisher, 2007; Sterzer et al., 2008;
ojciulik et al., 1998) and confirm the validity of the attention
anipulation.
The cross-condition classification results showed that the spa-

ial pattern of neural activation in response to a certain category of
timulus under the high attention condition can be used to decode
he neural responses to the same stimulus category under the low
ttention condition, and vice versa, with significantly above chance
ccuracy. This result was found for all three categories of stimuli in

he two ROIs examined, regardless of category preference of the
OIs. In addition, classification accuracy for the preferred category
f an ROI was significantly higher than that for the non-preferred
ategories. Confirming the functional selectivity for the FFA and
the CNR amplifying factor in both FFA and VWFA. The solid and dotted horizontal

VWFA, the results suggest that similar neural populations were
involved in coding a specific category of stimulus under different
attention conditions; otherwise, one would not expect such high
levels of cross-condition classification accuracies.

We also manipulated the CNR factor to examine its effect on the
cross-condition classification. The fitted signal changes are usu-
ally assumed to reflect the neural responses to a stimulus. The
regression residual reflects the noise consisting of stochastic com-
peting neural activities and fMRI measurement noise (Worsley
et al., 1996) that remains at a relatively consistent level across
different conditions. Under the “signal + noise” model of the mea-
sured neural activity (Friston et al., 1995), the CNR adjustment
should have mainly enhanced the strength of the “signal” while
keeping the “noise” unchanged, that is, the adjustment changes
the relative strength of the signal but not the spatial pattern of
the signal. Therefore, the result from the CNR adjustment is con-
sistent with the second model described in the introduction, that
is, similar neuronal populations are involved in stimulus coding
under different attention conditions differing only in the level of
signal strength. In such a situation, one would expect to see reason-
ably high accuracies for cross-condition classification, which can be
further increased when the signal is boosted in the low attention
condition, as we indeed observed here. This finding suggests that a
certain category of stimulus is coded by a specific neural substrate
and different levels of attention merely change the response level of
such a substrate quantitatively, as opposed to engaging a different
neural substrate.

In comparison, if the BOLD responses to a certain category of
stimulus under different attention conditions originated from dis-
tinct neural representations, that is, one set of neurons was used
for stimulus coding for the low attention condition and a different
set of neurons was  used for stimulus coding for the high attention
condition (per the first computational model described in Section
1), one would not expect high cross-condition classification accu-
racies, nor to expect such accuracies to improve with increasing
CNR, and in particular, to improve to a level matching the within-
condition classification. Taken together, our results suggest that
the spatial patterns of neural coding of category selectivity are spe-
cialized in the FFA and VWFA, where similar populations are used
for certain stimulus categories (i.e., faces and words, respectively).
Although some studies (e.g., Fischer & Whitney, 2009; Murray
& Wojciulik, 2004) appear to imply that neural spatial patterns
differed across attention conditions in other visual regions (i.e.,
primary visual areas and lateral occipital cortex), our current find-
ings do not necessarily contradict with these early observations.
It is likely that in previous studies attention did not completely

change, but rather “sharpen”, neuronal activation patterns. Such
relatively weak changes are technically difficult to detect with the
current resolution of MVPA. Another possible reason to account for
the seemingly discrepancy is the difference of paradigms used in
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he current study and studies of Fischer and Whitney (2009) and
urray and Wojciulik (2004).  Our study compared the spatial pat-

erns between different categories, while these two studies focused
n visually very similar stimuli.

Using a paradigm requiring participants to attend to one of two
imultaneously presented pictures, Reddy and Kanwisher (2007)
emonstrate that information about the preferred visual categories

n the FFA and PPA was somehow preserved even when the stimuli
ere unattended. Taking a different approach of cross-condition

lassification, the present study supports and extends their finding
y showing that the pattern of neural responses in the FFA and the
WFA remains unchanged when attention is altered.

Note that previous studies measuring the overall magnitude
f BOLD signals reached different conclusions regarding the func-
ional selectivity of the VWFA for visual words (Baker et al., 2007;
asson et al., 2002; Indefrey et al., 1997; Reinke et al., 2008;
agamets et al., 2000). The present results obtained from the
VPA method suggest that the spatial pattern of activation poten-

ially constitutes a better indicator of category selectivity (Reddy
 Kanwisher, 2007), supporting the functional selectivity of the
WFA for visual words from a different perspective.

The present results showed that manipulation of the CNR of the
ata affected MVPA performance. Therefore, when claiming a dif-
erence on MVPA performance, the effect of the CNR should be
onsidered, particularly when comparing and interpreting MVPA
erformance across different groups of subjects or different ROIs
Coutanche et al., 2011; Diana, Yonelinas, & Ranganath, 2008;
amitani & Tong, 2006). This issue has been rarely investigated. For
xample, Smith et al. (2011) manipulated the amplitude of neural
ctivities by varying the contrast of the stimulus, and found that
s the response amplitude was increased with contrast, the orien-
ation classification performance increased approximately linearly
ith the logarithm of stimulus contrast.

In conclusion, using cross-condition classifications, the present
tudy investigated whether attention alters the spatial coding of
ategory selectivity in the FFA and VWFA. Our findings provide
ompelling evidence that preferred stimulus categories in the FFA
nd the VWFA (i.e., faces for FFA and words for VWFA) evoke sim-
lar spatial representations under different attention conditions,
nd attention primarily modulates the CNR of the signals, a dom-
nant factor of classification accuracy. These findings add to our
nderstandings to the mechanisms of attentional modulation on
he functional specificity in the FFA and VWFA.
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