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a b s t r a c t 

Biological motion (BM) perception is of great survival value to human beings. The critical characteristics of BM 

information lie in kinematic cues containing rhythmic structures. However, how rhythmic kinematic structures 

of BM are dynamically represented in the brain and contribute to visual BM processing remains largely unknown. 

Here, we probed this issue in three experiments using electroencephalogram (EEG). We found that neural oscil- 

lations of observers entrained to the hierarchical kinematic structures of the BM sequences (i.e., step-cycle and 

gait-cycle for point-light walkers). Notably, only the cortical tracking of the higher-level rhythmic structure (i.e., 

gait-cycle) exhibited a BM processing specificity, manifested by enhanced neural responses to upright over in- 

verted BM stimuli. This effect could be extended to different motion types and tasks, with its strength positively 

correlated with the perceptual sensitivity to BM stimuli at the right temporal brain region dedicated to visual BM 

processing. Modeling results further suggest that the neural encoding of spatiotemporally integrative kinematic 

cues, in particular the opponent motions of bilateral limbs, drives the selective cortical tracking of BM informa- 

tion. These findings underscore the existence of a cortical mechanism that encodes periodic kinematic features 

of body movements, which underlies the dynamic construction of visual BM perception. 
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. Introduction 

Rhythms are central to life and pervasive in human behaviors. The

eural oscillations in our working brains are rhythmic (Hutcheon &

arom, 2000). The sounds and actions we produce, such as the words

e utter and the movements we make, also convey rhythmic signals

 Kotz et al., 2018 ). There has been a growing interest in exploring

ow oscillatory brain activities dynamically encode rhythmic structures

n human speech and language-related behaviors ( Brookshire et al.,

017 ; Ding et al., 2016 , 2017 ; Keitel et al., 2018 ; Luo and Ding, 2020 ;

iecke et al., 2018 ). However, it remains largely unknown whether and

ow neural oscillations encode non-verbal rhythmic signals in human

ovements. 

The current study focused on the neural encoding of biological

otion (BM), particularly the bodily movements of human beings,

hich deliver a wealth of biologically and socially relevant information

nd involve distinct mechanisms from that for nonbiological motion

timuli ( Blake and Shiffrar, 2007 ; Giese and Poggio, 2003 ; Hirai and

enju, 2020 ; Pavlova, 2012 ; Yovel and O’Toole, 2016 ). The kinematics

f BM can be isolated by point-light animations that consist of small light

okens placed at the major joints of a human actor ( Johansson, 1973 ).
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rucially, some basic forms of BM signals convey characteristic rhyth-

ic structures derived from kinematic cues, which have been linked to

he specialized visual processing of BM information. Take locomotion

s an example: the forward motion of each step, generated by either the

eft or the right foot, occurs recurrently to form a basic-level rhythmic

tructure (i.e., step cycle), and the alternating movements of the two

eet repeat periodically to specify a higher-level rhythmic structure (i.e.,

ait cycle). A substantial difference between these structures is that the

ait cycle conveys information that the step cycle does not have, e.g.,

he phase relation between the limbs, which provides critical features

or the recognition of human motion ( Booth et al., 2002 ; Casile and

iese, 2005 ; Giese and Poggio, 2003 ). A recent study showed that

bservers’ perceptual sensitivity to the point-light human BM fluctuates

ver time in a sinusoidal pattern that mimics the rhythmic structures of

he BM stimuli ( Thurman and Grossman, 2008 ). Notably, the extraction

f these rhythmic structures relies on the spatiotemporal summation

f BM information ( Casile and Giese, 2005 ; Giese and Poggio, 2003 ;

eri et al., 1998 ). Meanwhile, the duration of motion cycles limits

he temporal summation of BM but not translational or apparent

otion ( Beintema et al., 2006 ; Cai et al., 2011 ; Faivre and Koch, 2014 ;

eri et al., 1998 ), suggesting that BM processing may engage a special-
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i  
zed temporal summation mechanism driven by rhythmic kinematic

ues. 

Here, we investigated the dynamic neural encoding of the rhyth-

ic kinematic structures in BM stimuli and sought to reveal the un-

erlying spatiotemporal summation mechanism. In three EEG experi-

ents, we examined whether observers’ neural oscillations entrain to

he hierarchical kinematic structures in BM stimuli (e.g., the step cy-

le and the gait cycle for a walker), and if so, whether such neural

ntrainment effect reflects the specialized visual processing of BM in-

ormation. To this end, we included both upright and inverted BM stim-

li. Inversion disrupts the distinctive kinematic features of BM (e.g.,

ravity-compatible ballistic movements) and can significantly impair

M processing ( Chang and Troje, 2008 ; Grossman and Blake, 2001 ;

imion et al., 2008 ; Troje and Westhoff, 2006 ; Vallortigara and Re-

olin, 2006 ; Wang et al., 2010 ; Wang et al., 2022 ), whereas it does not

hange the basic visual properties and complexity of the stimuli, includ-

ng the rhythmic signals generated by low-level motion cues. Therefore,

he inversion effect has long been regarded as a marker of the speci-

city of BM processing, especially when dealing with the visual anal-

sis of kinematic cues ( Bardi et al., 2014 ; Troje and Westhoff, 2006 ;

ang et al., 2014 ; Wang and Jiang, 2012 ), and is expected to reflect

he BM-specific neural encoding process in our study. We found that

hile neural oscillations entrained to both basic- and higher-level rhyth-

ic structures in BM signals, only the neural responses induced by

igher-level structures were selectively enhanced for upright BM to sup-

ort a BM-specific neural representation. These results can be general-

zed to different stimuli (Walk in Experiment 1; Jump in Experiment

) and tasks (speed-change-detection in Experiments 1 & 2a; transient-

ariation-detection in Experiment 2b). 

We further explored the encoding mechanism underlying the BM-

pecific neural responses via computational modeling. In particular, we

ssessed the contributions of two spatiotemporal summation mecha-

isms to the orientation-dependent visual processing of BM informa-

ion: one pertains to the neural encoding of accumulating motion signals

cross joints (i.e., additive signals), the other associates with the neural

epresentation of the relative opponent motion of bilateral limbs (i.e.,

ntegrative signals). We estimated the weights of these signals by fitting

hem to the observed neural oscillation activity in the upright and in-

erted conditions, respectively. If the cortical tracking of a given signal

nderpins the specialized visual processing of BM information, this sig-

al would be expected to have a larger weight in the upright than in the

nverted condition. 

. Materials and methods 

.1. Participants 

A total of 40 participants with normal or corrected-to-normal vision

ook part in this study, 20 (11 female, mean age ± SD = 21.75 ± 2.10

ears) in Experiment 1 and the other 20 (10 female, mean age ±
D = 21.20 ± 2.14 years) in Experiment 2. None had neurological or

sychiatric disorders. They were naïve to the purpose of the study and

ave informed consent according to procedures and protocols approved

y the institutional review board of the Institute of Psychology, Chinese

cademic of Sciences. 

.2. Stimuli 

Two types of BM stimuli, Walk (3.05°×5.47°) and Jump

3.22°×5.97°), were used in Experiment 1 ( Fig. 1 , upper panel)

nd 2 ( Fig. 1 , lower panel), respectively. The BM stimuli consisted of

3 point-light dots attached to the major joints and the head of an actor

 Vanrie and Verfaillie, 2004 ). The point-light stimuli did not translate

n the screen and looked like a person walking on a treadmill or

erforming jumping jacks at the same position. A complete walk cycle

asted 1 s and was repeated 6 times to form a 6 s walking sequence
2 
walk cycle frequency: 1 Hz). A jump cycle lasted 1.2 s and was

epeated 5 times within a 6 s jumping sequence (jump cycle frequency:

.83 Hz). 

The inverted BM stimuli were created by mirror-flipping the up-

ight BM vertically. Inversion disrupts the distinctive kinematic features

e.g., gravity-compatible ballistic movements) of BM stimuli but does

ot change the rhythmic signals ( Simion et al., 2008 ; Troje and West-

off, 2006 ; Vallortigara and Regolin, 2006 ; Wang et al., 2014 ; Wang and

iang, 2012 , 2022 ). All stimuli were rendered white against a gray back-

round and displayed using MATLAB together with the Psychophysics

oolbox ( Brainard, 1997 ; Pelli, 1997 ). 

.3. Procedure and task 

All the Experiments were conducted in an acoustically dampened

nd electromagnetically shielded chamber. Participants sat 60 cm from

 CRT monitor (1280 ×1024,60 Hz), with their heads held stationary on

 chinrest. 

In Experiment 1, each trial ( Fig. 1 , middle panel) began with a white

xation cross (0.42° × 0.42°) displayed at the center of a gray back-

round for a random duration (0.8 s to 1 s). Subsequently, a point-light

alker walking toward left or right at a constant walking cycle fre-

uency (1 Hz) was presented for 6 s. To maintain observers’ attention,

7–23% of the trials were randomly selected as catch trials, in which the

peed of the walker changed one or two times throughout the trial. ‘One

ime’ indicates the speed of the walker becomes either faster (1.33 Hz)

r slower (0.80 Hz) and remains unchanged until the walker disappears.

Two times’ indicates the speed of the walker becomes faster or slower

nd returns to its original speed after 2–2.5 s. Participants were required

o detect and report the number of changes (0, 1, or 2) via keypresses

s accurately as possible when the point-light display was replaced by

 red fixation (i.e., speed detection task, SD task). The next trial started

–3 s after the response. Each participant completed 6 practice trials

o get familiar with the task. In the formal experiment, they completed

wo experimental blocks, one for the upright BM condition, the other for

he inverted BM condition. The order of the blocks was counterbalanced

cross participants. Each block consisted of 52 experimental trials with-

ut speed changes and 10–15 catch trials, resulting in a total of 124–134

rials. 

The procedure of Experiment 2a & 2b was identical to that of Ex-

eriment 1 except for the following differences. First, the stimuli were

oint light jumpers whose facing directions were deflected to the left or

ight by 22.5° from the central axis in the vertical plane. Second, the

requency of the jump cycle was 0.83 Hz and might change to 0.57 Hz

r 1.67 Hz in the catch trials of Experiment 2a, where participants per-

ormed the SD task. In Experiment 2b, participants were required to

erform a frequency-irrelevant variation detection task (VD task). In

his task, a random one of the five jump cycles was temporally scram-

led, leading to a transient variation in the catch trials. Participants had

o judge whether a variation occurred or not. 

.4. EEG recording 

EEG was recorded at 1000 Hz using a SynAmps 2 NeuroScan ampli-

er System with 64 Ag-Agcl electrodes placed on the scalp according to

he international 10–20 system. Horizontal and vertical eye movements

ere measured via four additional electrodes (HEOG and VEOG) placed

n the outer canthus of each eye and the inferior and superior areas of

he left orbit. Impedances were kept below 5k Ω for all electrodes. 

.5. EEG analysis 

Preprocessing. The catch trials were excluded from EEG analysis. All

reprocessing and analysis were performed using the EEGLAB toolbox

 Delorme and Makeig, 2004 ) in the MATLAB environment. EEG record-

ngs were down-sampled to 100 Hz, band pass-filtered between 0.1 and
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Fig. 1. Illustrations of visual stimuli and experimental procedures. The upper and lower panels depict the key frames from one cycle of the point-light walker 

and point-light jumper sequences, respectively. The colors of dots and lines between dots are used for illustration only and not shown in the formal experiment. The 

middle panel shows the experimental procedure. Each trial started with an 0.8–1 s fixation, followed by a point-light walker or jumper present for 6 s. 17–23% of the 

trials were catch trials, in which the speed of the BM stimuli randomly changed one or two times (Experiment 1 & 2a) or a transient variation occurred (Experiment 

2b). No change or variation occurred in the experimental trials. Observers were required to report the times of changes occurred or whether the variation occurred 

or not when the red fixation was present after the BM stimuli disappeared. After the response, a blank screen appeared for 2–3 s. 
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0 Hz, and then segmented into a series of epochs starting at the on-

et of the stimuli and lasting 6 s. The epochs were visually inspected,

nd trials contaminated with excessive noise were excluded from the

nalysis. There was no difference between the upright and inverted

onditions in terms of the total number of accepted epochs (means >

0%, p s > 0.38). After trial rejection, an independent component anal-

sis ( Jung et al., 2000 ) based on the Runica algorithm ( Bell and Se-

nowski, 1995 ; Makeig, 2002 ) was performed to remove eye and car-

iac artifacts. For each participant, the cleaned data were re-referenced

o the average mastoids (M1 and M2). The EEG recording during the first

econd of each trial was excluded to mitigate the influence of stimulus-

nset evoked activity on EEG spectral decomposition ( Nozaradan et al.,

012 ). After that, the EEG signals were averaged across trials for each

articipant in each condition. 

Frequency-Domain Analysis. We converted the averaged waveforms

rom the temporal domain to the spectral domain using Fast Fourier

ransform (FFT) with zero paddings (600). It resulted in a frequency

esolution of 0.167 Hz, i.e., 1/6 Hz, which is sufficient for observing

eural responses around the frequency of the rhythmic BM structures

1 Hz and 0.83 Hz). A Hanning window was applied when performing

FT to reduce spectral leakage. Power spectra were calculated as the

quared amplitude and then converted to decibel scale (i.e., 10 ∗ log10).

o remove the 1/f trend of the response power spectrum, the response

ower at each frequency was normalized by subtracting the average

ower measured at the neighboring frequency bins (two bins on each
3 
ide, 0.33 Hz) from the power at each frequency ( Ding et al., 2017 ;

enc et al., 2018 ; Nozaradan et al., 2012 ). The power was calculated

eparately for each electrode (except for electrooculogram channels),

articipant, and condition. 

Statistical analysis of EEG data. For each condition (Upright and

nverted), the significant neural entrainment effect or spectral peak

t each target frequency (1 & 2 Hz for Walk; 0.83 & 1.67 Hz for

ump) was examined by contrasting the normalized response power

t the target frequency against zero based on a two-sided t -test. A

luster-based permutation test with 1000 randomizations was used

o control for multiple comparisons across channels (excluding the

lectrooculogram channels) and identify the spatial distribution of the

ignificant cluster ( Kayser et al., 2015 ; Maris and Oostenveld, 2007 ).

he permutation test was performed based on the MATLAB toolbox

ieldTrip ( Oostenveld et al., 2011 ). We clustered data across channel

eighborhoods with an average size of 6.5 channels determined by

riangulated sensor proximity (function ft_prepara_neighbours, method

triangulation’). A type 1 error probability of less than 0.05 was

nsured for all clusters. To further evaluate the BM-specific cortical

esponses, we contrasted the entrainment effect between the upright

nd inverted conditions using a similar cluster-based permutation

est. Power at the electrode clusters showing a significant inversion

ffect was averaged to depict the power spectrum. Finally, we adopted

he Pearson correlation analysis and the cluster-based permutation

tatistics to assess whether interindividual differences in the BM-
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Fig. 2. The additive signals and integrative signals generated based on the Walk (upper panel) and Jump (lower panel) BM sequences. The additive signals 

(gray lines) are depicted as the instantaneous velocity, i.e., Euclidian displacement at each time point, accumulated across the two feet over time. Red and blue lines 

in the left panel indicate the velocity profile of the left and right feet, respectively. The integrative signals (black lines) are defined by the relative motion of the two 

feet, quantified as the horizontal distance between the two feet at each time point. The red and blue lines in the right panel depict the displacement of each foot in 

the horizontal direction. Additive and integrative signals contribute to the neural encoding of BM information with different weights (W add and W int ). 
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pecific entrainment effect were significantly correlated with those

n the task performance (i.e., detection sensitivity) across all the

xperiments. 

.6. Modeling 

The critical visual features of BM are carried by the movements of

ultiple joints over time rather than any single point in time or the

otion of one joint in space. Therefore, the cortical tracking of rhyth-

ic structures in BM information may involve the neural encoding of

patiotemporally summated BM signals. Here we constructed two pos-

ible summation signals, namely, the additive signal and the integrative

ignal ( Fig. 2 ), based on different summation rules. 

The additive signal is formed by the linear addition of kinematic cues

cross individual joints at each time stamp. Given the significant role of

otion velocity in visual BM perception ( Cai et al., 2011 ; Faivre and

och, 2014 ; Thurman and Grossman, 2008 ), this signal (S add , Eq.1 ;

ig. 2 , left panel, gray lines), in its simplest form, can be quantified

y the summation of velocity series across the most representative bi-

ateral joints, i.e., the left and right feet ( Bardi et al., 2014 ; Troje and

esthoff, 2006 ; Wang et al., 2014 ): 

 add ( t ) = V L ( t ) + V R ( t ) (1)

V L and V R denote the instantaneous velocity of the left and right feet

ver time, respectively. The velocity at each time point t (corresponding

o an individual frame) was computed as the Euclidian displacement of

ach foot from the current frame to the next frame. 

The integrative signal results from the integration of the opponent

otion pattern of the bilateral limbs. It reflects a specific organization

rinciple to integrate bilateral limbs into a unitary object when dealing

ith complex non-rigid motion signals ( Booth et al., 2002 ; Casile and

iese, 2005 ; Giese and Poggio, 2003 ). To be simplified but remain its

ore information, the integrative signal (S int , Eq.2 ; Fig. 2 , right panel,
4 
lack lines) was quantified by the relative motion (i.e., horizontal dis-

ance) of bilateral feet, consistent with the definition of opponent mo-

ion in previous studies ( Casile and Giese, 2005 ; Thurman and Gross-

an, 2008 ). 

 int ( t ) = H L ( t ) − H R ( t ) (2)

H L and H R denote horizontal displacement signals of left and right

eet over time, respectively. Their difference per frame characterizes the

elative motion of two feet at each time point t. S int with a value of zero

ndicates the moment of legs crossing. 

To estimate the contributions of the additive signals and integrative

ignals to the orientation-dependent neural representation of BM, we

ssigned independent weights (W add and W int ) to these two signals, then

ombined the weighted signals and transformed them into the frequency

omain through the fast Fourier transformation: 

f = F( W add × S add + W int × S int ) (3)

W add represents the weight of additive signals, and W int represents

he weight of integrative signals. F is the transformation process per-

ormed based on the MATLAB fft function. 

We fit the frequency transformed signals (Sf) with the observed spec-

ral distribution of neural oscillations and minimized their rooted mean

quared error (RMSE) through a constrained optimization algorithm

MATLAB fmincon ). The only parameters available to vary were W add 

nd W int , which were constrained above zero to evaluate the contribu-

ion of each signal to the neural encoding of BM information. We esti-

ated the model parameters for each condition and participant within

he 0–2.3 frequency band. The set of optimized parameter values min-

mizing the rooted mean squared error (RMSE) between the observed

pectral data and the model predicted data was selected as the best es-

imate. The optimization started from 900 sets of possible parameter

alues in the linear parameter space to avoid being trapped in a local

inimum. 
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Fig. 3. Cortical tracking of the rhythmic kinematic structures in BM stimuli. (A) The scalp topographies for the neural entrainment effect at the higher-level 

(1 Hz) and basic-level (2 Hz) cycle frequencies for each condition: upright (Upr) or inverted (Inv), and for the contrast between these conditions (Upr-Inv) in 

Experiment 1. Black dots indicate electrodes showing a significant spectral peak in the upright or inverted condition, or a significant inversion effect, as revealed 

by the cluster-based permutation test. (B) Power spectra averaged across the channels in the cluster showing a significant inversion effect. Shaded regions indicate 

standard errors of the mean. (C) & (D) show topographic and spectral power results for Experiment 2a and (E) & (F) for Experiment 2b. SD: speed detection; VD: 

variation detection. 
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. Results 

.1. Cortical tracking of hierarchical rhythmic structures in BM stimuli 

In Experiment 1, participants watched the motion sequences of up-

ight and inverted point-light walkers and were required to detect their

peed changes while their EEG signals were simultaneously recorded.

e first examined whether the power responses at the two frequencies

f interest (1 Hz for the gait cycle and 2 Hz for the step cycle) were

reater than zero, respectively, using a cluster-based permutation test

 Maris and Oostenveld, 2007 ). At 1 Hz, we observed a cluster show-

ng a significant entrainment effect or spectral peak in the upright ( p <

.001) but not in the inverted condition ( Fig. 3A ). At 2 Hz, both upright

 p = 0.002) and inverted ( p < 0.001) stimuli elicited a significant en-

rainment effect almost over the whole brain. To further investigate the

M-specific neural responses, we compared power responses between

he upright and inverted conditions at the two frequencies of inter-

st, respectively, and found a significant cluster only at 1 Hz ( Fig. 3A ;

 = 0.003; P3, P2, P4, CP3, CP1, CPZ, CP2, CP4, CP6, C4, C6, FC4,

C6, F6), in which the average power across participants was stronger

n the upright condition compared with the inverted condition. Such

n inversion effect was right-lateralized, and pronounced over the right

arieto-temporal region. The power spectra results pooled over channels

ithin this significant cluster are shown in Fig.3B . By contrast, no signif-

cant inversion effect was observed at 2 Hz for the step-cycle frequency

 Fig. 3A ). 

Together, these results revealed two important spectral components,

.e., enhanced neural oscillations at 1-Hz and 2-Hz, involved in the cor-

ical tracking of the rhythmic structures in the BM stimuli. Critically, the

pectral power at 1 Hz was specifically enhanced for upright BM stimuli

elative to the inverted counterparts, suggesting that the neural tracking

f higher-level rhythmic structures is associated with the specific neural

epresentation of BM signals. 
5 
.2. Cortical tracking of BM signals independent of motion type, speed, and

ask 

Experiment 2a aimed to investigate whether the findings from Ex-

eriment 1 can be generalized to different motion types and speeds.

o address this issue, we employed point-light jumpers with a different

otion speed (0.83 Hz for the jump cycle) from the point-light walkers

s the experimental stimuli. In Experiment 2b, we adopted a frequency-

rrelevant variation detection task (i.e., VD task, see Methods) to further

xplore whether the entrainment effect could occur with different task

emands. 

In Experiments 2a & 2b, we performed the same statistical analy-

is as Experiment 1 and found similar results. In Experiment 2a, we

btained a cluster with a significant entrainment effect in the upright

ondition ( p < 0.001, cluster-based permutation test) but not in the in-

erted condition at 0.83 Hz ( Fig. 3C ). At 1.67 Hz, both upright and

nverted stimuli elicited a significant entrainment effect widely across

he brain ( ps < 0.001). We observed similar results in Experiment 2b

 p s < 0.001), except that there was a small left-lateralized cluster show-

ng an entrainment effect at 0.83 Hz in the inverted condition ( Fig. 3E ;

 = 0.002), probably because different task demands lead to variations

n the topographical maps. More importantly, we consistently identified

lusters showing significant inversion effects only at the higher-level

tructure frequency (i.e., 0.83 Hz) in both experiments, regardless of

hether the participants were required to detect the change of speed

n Experiment 2a ( Fig. 3C ; p < 0.001; T8, TP8, FT8, P1, PZ, P2, P4,

6, P8, C3, C2, C4, C6, CP3, CP1, CP2, CP4, CP6, POZ, PO6, PO8) or

he frequency-irrelevant variation in Experiment 2b ( Fig. 3E ; p = 0.016;

PZ, CZ, C2, C4, FC4, FC6). The power spectra results pooled over chan-

els within these clusters are depicted in Fig.3D and Fig.3F . In contrast,

e did not find any cluster showing significant inversion effects at the

asic-level rhythmic cycle frequency (i.e., 1.67 Hz) in both experiments.

hese results confirmed that the cortical tracking of the higher-level
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Fig. 4. The correlation between neural responses and behavioral performances. (A) The topography depicts the behavior-neuro correlation coefficients based 

on data collapsed across three experiments. Black dots indicate significant channels revealed by the cluster-based permutation test. Orange, blue, and green dots in 

the scatter plot indicate the individual data from Experiments 1, 2a, & 2b, respectively. Shaded regions indicate the 95% confidence interval. (B) The topography 

shows that the entrainment effect at the basic-level cycle frequency did not correlate with the behavioral performance at any electrode. 
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hythmic structures reflects the specialized neural representation of BM

ignals. 

Besides power, the phase-locking neural response is also a great in-

ex for the neural encoding of rhythmic information, as suggested by

anguage studies ( Ding et al., 2017 ; Luo and Ding, 2020 ). Thus, we an-

lyzed the inter-trial phase coherence (ITPC) of the EEG data for Ex-

eriments 1, 2a, and 2b, respectively (see Supplementary Information

or details). But notably, rhythmic signals in BM derive from a series

f joints, which move at the same frequency but are not necessarily

n a coherent phase. Specifically, the counter-phase properties of the

pposite limbs in some types of BM (such as walking) may attenuate

hase-locking responses at the level of neuronal populations, if we as-

ume the EEG signals reflect phase coherence among neurons tracking

ifferent joints. Compatible with this assumption, we observed weak

hase-locking neural activity for walking in Experiment 1 (see Fig. S1

n Supplementary Information). Nevertheless, the ITPC results in Experi-

ents 2a & 2b ( Fig. S1 ) were similar to those obtained from power anal-

sis, providing substantial evidence that the jumping stimulus, which

as partial phase coherence across different joints, induces BM-specific

hase-locking neural responses. 

.3. Cortical tracking of higher-level rhythmic structures correlates with 

ehavioral performance 

Across all experiments, the neural tracking effect at the higher-level

tructure frequency was overall stronger in the upright condition versus

he inverted condition but had a wide range of individual variations.

ould such variations predict observers’ perceptual sensitivity to BM

timuli in the behavioral tasks? To explore this possibility, we performed

 cluster-based permutation test on the Pearson correlation ( Maris and

ostenveld, 2007 ) between the power of the neural response at each

lectrode and the perceptual sensitivity measured by d’ ( Green and

wets, 1966 ). 

We transformed the inversion effects in neural responses and percep-

ual sensitivity (i.e., the difference between upright and inverted condi-

ions) to Z scores for each experiment, respectively, and collapsed the

ata across three experiments to improve the robustness of the correla-

ion analysis. Two outliers whose behavioral performances exceeded 2.5

tandard deviations were excluded from further analysis. The topogra-
6 
hy in Fig. 4A depicted the neuro-behavior correlation coefficients over

he whole brain, with a significant cluster around the right temporal-

arietal electrodes ( p = 0.014, cluster-based permutation test; T8, TP8,

6, P8, C6, CP4, CP6). As illustrated in the scatter plot, the inversion

ffect in neural responses at the higher-level cycle (cycleH) frequencies

averaged across channels in the significant cluster) positively corre-

ated with the inversion effect in perceptual sensitivities ( r = 0.498, p

 0.001). We did not observe any significant cluster showing positive

orrelation between the neural responses at the basic-level structure (cy-

leB) frequencies and behavioral performances ( Fig. 4B ). 

.4. Integrative signals contribute to the BM-specific neural encoding 

echanism 

Based on the EEG results, we further explored the encoding mecha-

ism for the BM-specific cortical entrainment effects by adopting a com-

utational modeling approach. The perceptual sensitivity to BM signals

ncreases with the exposure time and the number of displayed joints,

uggesting that the processing of rhythmic BM information relies on spa-

iotemporal summation ( Neri et al., 1998 ). As described in the Methods

ection (see Modeling ), the spatiotemporal summation of BM information

ay engage the cortical tracking of additive signals or/and integrative

ignals. It is plausible to assume that neural oscillations tracking a sum-

ation signal with greater weight in the upright than in the inverted

ondition would reflect the specialized neural representation of BM. 

Therefore, we estimated the weights for the additive and integrative

ignals (W add and W int ) to evaluate their separate contributions to the

eural encoding of BM information. Here, we only presented the results

or Experiment 1 and Experiment 2a, given that Experiment 2a & 2b

sed the same stimuli and yielded similar modeling results. 

We fit the model data and the observed spectral distribution of neu-

al responses for each condition and participant ( Fig. 5 A & C). A paired

 -test revealed no significant effect of orientation for the RMSE (Walk:

 (19) = 0.075, p = 0.941, Cohen’s d = 0.017; BF 10 = 0.233; Jump: t

19) = 1.001, p = 0.330, Cohen’s d = 0.224; BF 10 = 0.362), demon-

trating that the modeling methods result in comparable fitting qual-

ty for the upright and inverted conditions. We further performed a re-

eated measures ANOVA on the computational modeling results, with

ignal type (additive vs. integrative) and stimulus orientation (upright
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Fig. 5. Modeling results. (A) & (C) The observed and modeling data for the walk and jump stimuli. Colored dashed lines refer to the spectral distribution within 

the 0–2.3 Hz frequency band in the group-level EEG response to upright (left panel) or inverted (right panel) stimuli. Gray solid lines represent the predicted data 

generated by the model. (B) & (D) Estimated W add and W int values for each orientation condition and stimulus type. Light lines and circles indicate individual data. 

Bold lines and circles indicate the group means. W add : the estimated weight of additive signals; W int : the estimated weight of integrative signals; n.s.: not significant; 
∗ ∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001. 
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s. inverted) as within-subject variables, for the walk and jump stim-

li, respectively. For both stimuli, the main effect of signal type was

ignificant (Walk: F (1,19) = 50.200, p < 0.001, ƞ2 = 0.725; Jump: F

1,19) = 13.026, p = 0.002, ƞ2 = 0.407), with a higher weight for ad-

itive than for integrative signals. No significant main effect of orien-

ation was observed (Walk: F (1,19) = 0.353, p = 0.560, ƞ2 = 0.018;

ump: F (1,19) = 3.109, p = 0.094, ƞ2 = 0.141). Most importantly, the

nteraction between orientation and signal type was significant (Walk: F

1,19) = 6.534, p = 0.019, ƞ2 = 256; Jump: F (1,19) = 4.904, p = 0.039,
2 = 205). The post-hoc comparisons with Bonferroni correction showed

hat the weight for additive signals was not significantly different be-

ween the upright and inverted conditions (Walk: t (19) = − 1.227,

 = 1.000, Cohen’s d = 0.274, BF 10 = 0.448; Jump: t (19) = − 0.267,

 = 1.000, Cohen’s d = 0.060, BF 10 = 0.240), while that for integrative

ignals was significantly larger in the upright than in the inverted con-

ition ( Fig. 5 B & D , Walk: t (19) = 3.840, p = 0.007, Cohen’s d = 0.859,

F 10 = 33.573; Jump: t (19) = 3.920, p = 0.006, Cohen’s d = 0.877,

F 10 = 39.332). These results suggest that the cortical tracking of inte-

rative rather than additive signals is related to the specialized neural

epresentation and visual processing of BM information. 

. Discussion 

The current study investigates how oscillatory brain activity dynam-

cally encodes rhythmic signals in human movements and supports the

isual processing of BM information. We found that neural oscillations

ntrained to the basic- and higher-level spatiotemporal structures

merged from periodic kinematic profiles of the BM sequences. More

mportantly, the cortical tracking of higher-level kinematic structures

f the BM stimuli (such as the gait cycle and jump cycle) showed a

ignificant inversion effect, manifested by enhanced neural responses

o upright over inverted BM signals. Such inversion effect consistently

ppeared across stimulus types and tasks and was positively correlated

ith individuals’ perceptual sensitivity to the BM stimuli. Since inver-

ion does not change the low-level physical attributes but abolishes
7 
he critical kinematic features of BM ( Troje and Westhoff, 2006 ;

allortigara and Regolin, 2006 ; Wang et al., 2022 ), these findings hint

t a unique temporal coding mechanism for visual BM processing. 

The modeling results further suggest that although both additive and

ntegrative signals contribute to the perception of BM, the integrative

ignals depicting the complex opponent motion pattern appear to drive

he orientation-dependent, BM-specific neural encoding process. A pos-

ible explanation for these findings is that upright BM stimuli convey

ravity-compatible kinematic cues that are critical for BM perception

 Maffei et al., 2015 ; Shi et al., 2010 ; Vallortigara and Regolin, 2006 ;

ang et al., 2010 , 2014 ; Wang and Jiang, 2012 ; Wang et al., 2022 ). Such

ravity-compatible motion cues have been extremely familiar to terres-

rial creatures on earth. Hence, they make up a sort of “vocabulary ”

or developing dynamic templates in the brain to trigger the processing

f integrative signals contained in upright BM stimuli ( Cavanagh et al.,

001 ). However, when confronting inverted BM stimuli that do not acti-

ate the gravity-compatible dynamic templates, the brain may only uti-

ize the additive signals for visual motion processing. Further research

ould examine this hypothesis by isolating or depriving the gravity-

ompatible signals from BM stimuli ( Chang et al., 2018 ). 

Our findings extend our understanding of the temporal dynamic

haracteristics of the neural representation of BM information. Previ-

us event-related potentials (ERP) studies have revealed that upright

M stimuli, compared with inverted BM, elicit stronger negative neu-

al responses (e.g., N170, N2, N300) over the occipitotemporal region

 Jokisch et al., 2005 ; White et al., 2014 ). However, these negative com-

onents may reflect the neural processing of configurational rather than

inematic cues. On the one hand, intact BM stimuli always elicit a

tronger negative response than spatially scrambled ones ( Bottari et al.,

015 ; Hirai et al., 2003 , 2013 ; Hirai and Hiraki, 2005 ; Krakowski et al.,

011 ; Saunier et al., 2013 ). On the other hand, the strength of the nega-

ive neural response is unable to distinguish between intact and tempo-

ally scrambled BM stimuli ( Hirai and Hiraki, 2006 ). Contrary to these

ndings, our study reveals an oscillatory brain mechanism engaging in

elective tracking of the critical kinematic features of BM signals. Such a
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echanism may support the spatiotemporal integration of BM informa-

ion and provides a temporal frame for the segmentation of BM signals,

aying the ground for further elaborate analysis of dynamic characteris-

ics of the BM stimuli in the brain. 

Notably, the BM-specific cortical tracking effect and the neuro-

ehavioral correlation observed in the current study are lateralized to

he right parieto-temporal area. These findings are in line with obser-

ations from functional magnetic resonance imaging (fMRI) and tran-

cranial magnetic stimulation (TMS) studies regarding the hemispheric

symmetry in visual BM processing. In particular, the right posterior su-

erior temporal sulcus (pSTS) shows stronger activity or a different acti-

ation pattern of fMRI signals in response to BM compared with non-BM

r inverted BM stimuli ( Grossman and Blake, 2001 ; Wang et al., 2022 ).

epetitive TMS over the right pSTS disrupts the perception of upright

ut not inverted BM ( Grossman et al., 2005 ). This region is also respon-

ible for the integration of kinematic and configurational cues in BM in-

ormation ( Jastorff et al., 2012 ; Jastorff and Orban, 2009 ; Sokolov et al.,

018 ). Considering the crucial role of pSTS in the specialized represen-

ation of BM signals and the spatiotemporal integration of BM informa-

ion, it is likely that the cortical tracking of the higher-level rhythmic

tructures in BM signals originates from this region. In addition, we also

bserved the cortical tracking of BM signals on the central electrodes.

revious research has found critical contribution of motor regions to BM

rocessing ( Fraiman et al., 2014 ; Martins et al., 2017 ; Pozzo et al., 2017 ;

aygin, 2007 ; Saygin et al., 2004 ; Ulloa and Pineda, 2007 ; van Keme-

ade et al., 2012 ), with a causal relationship between premotor areas

nd BM perception ( Saygin, 2007 ; van Kemenade et al., 2012 ). Thus,

lthough we did not find a significant behavioral-neural correlation in

he central region, this region remains a possible candidate for the cor-

ical tracking response. Future research could pinpoint the exact neu-

al substrates for encoding rhythmic BM signals using an approach with

igh spatial and temporal resolutions, such as magnetoencephalography

MEG) combined with fMRI. 

Interestingly, the superior perceptual processing in the upright ori-

ntation is a general principle that applies to various visual stim-

li besides BM, such as faces, words, and other objects of expertise

 Campbell and Tanaka, 2018 ; Gauthier et al., 1999 ; Kao et al., 2010 ;

in, 1969 ; Yovel and Kanwisher, 2005 ), indicating there might be spe-

ialized neural circuitry for such processes. For static stimuli, the con-

gurational processing of different visual categories and the related in-

ersion effects occur primarily at some domain-specific cortical regions,

hich anatomically and functionally cluster on the fusiform gyrus of

he ventral temporal cortex ( Grill-Spector and Weiner, 2014 ; Kao et al.,

010 ; Watson et al., 2016 ; Weiner and Zilles, 2016 ; Yovel and Kan-

isher, 2005 ). By contrast, the inversion effect for BM may stem from

he pSTS, a region sensitive to facial and bodily movement, and its func-

ional connectivity with the posterior insula, an area responsible for

ravity-constrained visual motion processing ( Grossman et al., 2005 ;

rossman and Blake, 2001 ; Wang et al., 2022 ). The current study fur-

her suggests that the orientation-dependent neural representation of

M relates to cortical tracking of its kinematic structure, presumably

riven by oscillatory neural responses transmitted through the dorsal

isual stream to the pSTS. These findings, taken together, indicate that

here might be specialized and distinct neural circuits underlying the

nversion effects for dynamic and static visual objects, respectively. 

Like BM, music and languages convey nested rhythmic informa-

ion generated by human activities. More intriguingly, the hierarchi-

al cortical tracking of BM functionally resembles that of music and

peech, despite these processes arising from different sensory modali-

ies. Studies on music perception demonstrate selective neural entrain-

ent to lower-level (e.g., beat/time/pulse) and higher-level (e.g., meter)

hythmic structures, which reflects the internal representation of mu-

ic rather than the acoustic energy of the sound envelope ( Lenc et al.,

018 ; Nozaradan, 2014 ; Nozaradan et al., 2011 , 2012 ). Among these,

he higher-level cortical tracking effect is modulated by top-down met-

ic interpretation of the beat ( Nozaradan et al., 2011 ) and one’s music
8 
xperience ( Cirelli et al., 2016 ; Doelling and Poeppel, 2015 ; Soley and

annon, 2010 ). In speech processing, while cortical oscillations entrain

o both higher- (e.g., phrase) and lower- (e.g., syllable) level rhyth-

ic linguistic structures, the former effect is more relevant to speech

erception and comprehension ( Ding et al., 2016 , 2017 ; Keitel et al.,

018 ; Luo and Ding, 2020 ). Here, we found hierarchical neural en-

rainment to rhythmic BM, with only the cortical tracking of higher-

evel kinematic structures (i.e., the walk and jump cycle) reflecting the

M-specific neural processing and correlated with perceptual sensitiv-

ty. The similarity among music, speech, and BM sheds light on how

ur cognitive and neural systems process rhythmic information in these

omplex and meaningful dynamic stimuli. Humans and various other

pecies possess the ability to produce, perceive, and respond to rhyth-

ic signals, either in the form of sounds or actions ( Kotz et al., 2018 ;

atel et al., 2009 ; Rouse et al., 2021 ). It is tempting to speculate that,

hen confronted with such information, it is an evolutionarily opti-

al response of our rhythmic brain to extract statistical regularities

rom the rhythmic structures embedded therein, which creates a ba-

is for understanding others’ activities and facilitating interaction. On

he other hand, speech and music comprehension rely on auditory pro-

essing and learning ( Cirelli et al., 2016 ; Ding et al., 2016 ; Doelling and

ssaneo, 2021 ; Soley and Hannon, 2010 ), whereas BM perception, espe-

ially the processing of its kinematic properties, is an innate capability

f the visual system less dependent on learned experience ( Bardi et al.,

011 ; Chang and Troje, 2009 ; Simion et al., 2008 ; Vallortigara and Re-

olin, 2006 ; Wang et al., 2018 ). It would be interesting to explore in the

uture whether the ability to encode the higher-order kinematic struc-

ure in BM emerges in a different way from that for speech and music

hrough cross-species and behavioral genetic research. 

. Conclusion 

Evolution has endowed biological organisms with the ability to inter-

ct in real-time with external signals that rhythmically stimulate their

ensory organs ( Hattori and Tomonaga, 2020 ; Kotz et al., 2018 ). The

urrent study adds to this picture by showing that the cortical neural os-

illations dynamically and hierarchically represent rhythmic signals in

uman body movements. Crucially, the neural encoding of spatiotem-

orally integrated kinematic cues (i.e., opponent motions of bilateral

imbs) embedded in higher-level motion structures supports the special-

zed visual processing of BM information. These findings provide fresh

nsights into the dynamic neural encoding mechanism underlying visual

M processing and open the possibility of treating the cortical tracking

f rhythmic kinematic structures as a biomarker for visual BM percep-

ion. 
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