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Abstract
As a prominent illusion, the motion aftereffect (MAE) has traditionally been considered a visual
phenomenon. Recent neuroimaging work has revealed increased activities in MT+ and decreased
activities in vestibular regions during the MAE, supporting the notion of visual–vestibular interaction
on the MAE. Since the head had to remain stationary in fMRI experiments, vestibular self-motion
signals were absent in those studies. Accordingly, more direct evidence is still lacking in terms of
whether and how vestibular signals modulate the MAE. By developing a virtual reality approach,
the present study for the first time demonstrates that horizontal head rotation affects the perceived
velocity of the MAE. We found that the MAE was predominantly perceived as moving faster when
its direction was opposite to the direction of head rotation than when its direction was the same
as head rotation. The magnitude of this effect was positively correlated with the velocity of head
rotation. Similar result patterns were not observed for the real motion stimuli. Our findings support
a ‘cross-modal bias’ hypothesis that after living in a multisensory environment long-term the brain
develops a strong association between signals from the visual and vestibular pathways. Consequently,
weak biasing visual signals in the associated direction can spontaneously emerge with the input of
vestibular signals in the multisensory brain areas, substantially modulating the illusory visual motion
represented in those areas as well. The hypothesis can also be used to explain other multisensory
integration phenomena.
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1. Introduction

The motion aftereffect (MAE) is a well-known visual aftereffect in which ex-
posure to motion in one direction causes illusory motion of a static pattern in
the opposite direction (Anstis et al., 1998). It was first reported by Aristotle
(about 330 BC), and is also known as the waterfall illusion (Addams, 1834).

As a visual illusion, the MAE has traditionally been thought to result from
an imbalance in responsiveness of oppositely tuned motion detectors (Barlow
and Hill, 1963, Huk et al., 2001), and to be selective in retinotopic coordinates
(Knapen et al., 2009; Wenderoth and Wiese, 2008). However, recent studies
argue that the MAE can also be anchored in spatiotopic (Mikellidou et al.,
2017; Turi and Burr, 2012) and hand-centered coordinates (Matsumiya and
Shioiri, 2014). In the spatiotopic MAE (aka ‘positional MAE’ or ‘PMAE’),
adaptation to motion within a window produced an aftereffect at the adapting
spatial location after the subjects had made a saccade to a new fixation point.
That is, the adapter and test were presented at the same spatial but differ-
ent retinal locations. The hand-centered MAE was found when the positions
of adapter and test were rendered the same relative to a seen hand but non-
overlapping on the retina. The finding of a hand-centered MAE implies that
visual–proprioceptive integration (Graziano, 1999) might modulate the MAE,
and that the MAE should be more than a pure visual phenomenon. Thus, an
intriguing question is whether the MAE can also be modulated by the interac-
tions between visual and other non-visual sensory, e.g., vestibular, signals or
not.

In the past decades, a number of neuroimaging studies have been conducted
to investigate the neural mechanisms underlying the MAE. Several pioneer
studies have highlighted the role of the human MT+ area in representing the
MAE (Culham et al., 1999; He et al., 1998; Taylor et al., 2000; Théoret et al.,
2002; Tootell et al., 1995). Although Huk and colleagues called in question
that MT+ activity during the MAE is caused by attention rather than the MAE
itself (Huk et al., 2001), Castelo-Branco et al.’s work shows the same activa-
tion when attention is not focused on a motion feature (Castelo-Branco et al.,
2009). Moreover, Seiffert et al. found increased magnitude of the first-order
MAE from early to later visual areas, especially MT+, yet a similar pattern
was not observed in real motion (Seiffert et al., 2003). By using multivariate
pattern classification, Hogendoorn and Verstraten further reported that in area
MT+, the MAE is encoded differently from real motion in the same perceived
direction (Hogendoorn and Verstraten, 2013). Both of the latter works indicate
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that area MT+ is somehow unique in representing the MAE (Hogendoorn and
Verstraten, 2013; Seiffert et al., 2003).

Area MT+ includes the middle temporal (MT) plus other adjacent motion-
sensitive areas, including the medial superior temporal (MST) area (Zeki et al.,
1991). Area MST receives strong projections from the MT area that encodes
the basic motion information (Maunsell and van Essen, 1983). Moreover, vi-
sual and vestibular heading signals converge in the dorsal medial superior
temporal area (MSTd), an area thought to be involved in self-motion percep-
tion (Britten and van Wezel, 1998; Gu et al., 2008; Page and Duffy, 2003).
Therefore, the activation of MT+ during the MAE potentially relates the MAE
with visual–vestibular interaction (possibly in MSTd). Supporting this notion,
recent fMRI work reports two important findings that during the MAE, MST
(but not MT/V5) solely activates, and the vestibular core region OP2 (the hu-
man homologue of macaque’s PIVC) deactivates (Rühl et al., 2018). All these
findings hint that visual–vestibular interactions are related to the MAE.

However, it should be noted that Rühl et al.’s (2018) report, as well as other
related neuroimaging literature, can serve only as indirect evidence for the
notion of visual–vestibular interactions during the MAE. The major reason
is that the subject’s head has to remain stationary in an fMRI experiment.
Thus, no vestibular self-motion input signals emerge during the perception of
MAE, making the existence of visual–vestibular interactions a pure specula-
tion. Ideally, a more direct test of vestibular modulations on the MAE should
involve head movements during the experiment, because this manipulation
allows an empirical observation of how vestibular signals affect the MAE. Un-
fortunately, head movements are usually not permitted in an fMRI experiment.
Taking advantage of the slow dynamic of the blood-oxygen-level-dependent
(BOLD) signal, Schindler and Bartles (2018) introduced a new method to
study the influence of head movements on processing real visual motion stim-
uli (Schindler and Bartels, 2018). After rotating two times away from a center
position and back in a trial phase, the subject’s head was rapidly stabilized by
inflatable aircushions. An immediately subsequent acquisition phase was used
to measure the delayed hemodynamic responses to the real visual motion stim-
uli presented during the voluntary head rotations in the trial phase. However,
the characteristics of the MAE and the slow timing of their method consti-
tute big challenges for investigating the MAE during head movements. For
example, the inter-session and inter-individual variations of the MAE duration
make it unlikely to precisely set an appropriate length for the fMRI acquisition
phase before the scanning starts. Another nuisance is that the relatively long
trial phase (e.g., 10 s in their work) leads to de-adaptation, making the top-up
adaptation paradigm a necessity. Unfortunately, this would cause contamina-
tion of the BOLD signals from the MAE by those from the top-up adapters.
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Figure 1. Illustration of the apparatus and stimuli. We developed a virtual reality system (a). The
visual stimuli were presented on the goggles screens. In the head movement condition, subjects
rotated their heads back and forth in the horizontal plane, with the head movement data tracked
in real-time by a three-space sensor. The graphs in (b) show the stimuli in Experiment 1a. The
red and blue arrows show the directions of real motion and motion aftereffect, respectively,
which were not presented actually. The head remained still during the initial (30 s) and top-up
(10 s each) adaptation phases. Between every two successive adaptation phases was a test phase
in which the subject made a single head rotation from one side to the other. Subjects indicated
which test grating appeared to move faster at the end of each head rotation. The graphs in (c)
show the stimuli in Experiments 1b. On each trial, subjects rotated the heads to one side. At the
end of each head rotation, subjects indicated which of the two gratings appeared to move faster.
Thereafter, a white noise image flickered to eliminate any residual aftereffect.

Thus, unless a more revolutionary neuroimaging technique is developed, psy-
chophysical approaches are still more preferable to directly examine whether
vestibular signals can modulate the MAE or not.

Accordingly, the present study adopted a recently developed virtual-reality
method (Bai et al., 2019). Visual stimuli were presented on a head-mounted
display; meanwhile, the subjects rotated their heads back and forth (Fig. 1a).
This new method allowed us to measure how head rotation in the horizontal
plane affected the perceived velocity of the MAE. The perceived velocity has
been considered to reflect the magnitude or strength of the MAE; thus, one of
the neutral test methods for measuring the strength of an MAE is a matching
procedure used primarily to estimate the speed of an MAE (Pantle, 1998). If
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vestibular signals can modulate the MAE, one may expect to see a different
pattern of the perceived velocity of the MAE when the head is rotating than
when the head is stationary. Recent work has shown that the perceived velocity
of real motion can be affected by self-motion (Hogendoorn et al., 2017a, b).
Since the MAE to some extent resembles a certain slow real motion in ap-
pearance, we also examined the influences of head rotation on the perceived
velocity of real motion, and compared those results with the observations for
the MAE.

2. Material and Methods

Experimental procedures in all the experiments of the present study were
approved by the Institutional Review Board of the Institute of Psychology,
Chinese Academy of Sciences. The work has been carried out in accordance
with The Code of Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans. Informed consent was obtained
from all subjects. All subjects had normal or corrected-to-normal vision.

Stimuli were presented to the subjects on Sony HMZ-T3 (Sony Corp.,
Tokyo, Japan) head-mounted goggles (49.4° × 27.8° visual angle, 1280 ×
720 pixel resolution at 60 Hz) connected to a Dell XPS 8700 (Dell, Round
Rock, TX, USA) computer, and programmed in Matlab (The MathWorks, Nat-
ick, MA) and Psychtoolbox (Brainard, 1997). A three-space sensor (TSS-WL
Sensor, YEI Technology, Portsmouth, OH, USA), which was used to record
the subject’s head movement data in real time, was attached on top of the hel-
met of the goggles (Fig. 1a). Communication with the three-space sensor was
realized through a customized computer program that was developed previ-
ously. Visual stimuli presented to the subjects were also displayed on an LCD
monitor by which the experimenter could see what the subjects were viewing.

2.1. Experiment 1

2.1.1. Participants
Twenty normal adults (eleven females, nine males, age range 19–24 years)
participated in Experiments 1a and 1b. Ten (six females, four males, age range
18–24 years) were tested for the matched condition of Experiment 1b, eight of
whom also participated in Experiment 1a and other conditions of 1b.

2.1.2. Experiment 1a: MAE
In this experiment subjects simultaneously adapted to a grating drifting left-
ward and another grating drifting rightward while their heads remained sta-
tionary. A top-up adaptation paradigm (i.e., each test phase was followed by
a re-adaptation phase) was used to avoid fast dissipation of the MAE. Dur-
ing each test phase, subjects made a single head rotation in the horizontal
plane; meanwhile they were presented with static test gratings which appeared
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to move in the opposite direction to the adapting gratings due to the MAE.
Therefore, the direction of head rotation coincided with the direction of illu-
sory motion of one test grating, and so was opposite to that of the other test
grating. By the end of each head rotation, the subjects were required to make
a binary judgment which of the two gratings moved faster.

In everyday life, a head turn usually results in retinal motion in the opposite
direction. Therefore, in the present study the MAE or real motion of a grating
was referred to as ‘congruent’ if its drifting direction was the same as the di-
rection of head-rotation-induced retinal motion in everyday life. For example,
when the head is rotating to the left, a grating drifting rightward is considered
‘congruent’ (defined for both physical and illusory motion), and the one drift-
ing leftward is called ‘incongruent’. If head rotation modulated the perceived
velocity of MAE, its influence would likely be direction-specific. Thus we ex-
pected the subjects to report one particular test grating moving faster than the
other one in a major proportion of trials.

2.1.2.1. Stimuli and Procedure. A black fixation point (0.46° in diameter)
was presented on the center of a mid-gray background. Subjects were told to
maintain a good fixation throughout an experimental session. During adap-
tation, subjects were presented with two full-contrast vertical gratings in the
upper and lower visual fields (Fig. 1b). One grating was placed 0.39° above
the fixation point, and the other 0.39° below the fixation. Both gratings sub-
tended 25° (horizontal) by 7° (vertical), the spatial frequency of which was
0.13 cycle/°. They drifted at 11.59°/s in the opposite direction. The grating in
the upper visual field always drifted leftward, whereas the one in the lower
visual field drifted rightward.

A top-up paradigm was adopted for visual motion adaptation. Specifically,
the participants first adapted to the drifting gratings for 30 s (i.e., the initial
adaptation phase) before the first test probe appeared. In each subsequent trial,
the adapting grating (also called top-up) was displayed for 10 s, followed by
a test phase. The stimuli in the test phases were the same as in the adaptation
phases except that both gratings were stationary and the fixation point was
changed from black to red.

There were two experimental conditions — head movement and head still.
In the head movement condition (Fig. 1b), subjects’ initial head (yaw) posi-
tions were always on the rightmost side. After they pressed the space bar, the
adapting gratings were presented for 30 s, during which subjects adapted to the
drifting gratings while keeping their heads stationary. Immediately after this
initial adaptation phase, the fixation became red. This meant the start of the
first test phase, and the two gratings (i.e., test probe) became physically sta-
tionary. The subjects were required to immediately make a head (yaw) rotation
with a subjectively constant speed. Note that ‘subjectively constant speed’ was
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Figure 2. The mean velocity and angle of head rotation across the subjects in each experiment
and condition (a). Error bars represent standard errors of means (SEM). The graphs in (b) show
the velocity profile of the subjects’ head rotation in each experiment. Solid lines indicate the
grand average value, and the shaded areas indicate 1 SEM. ‘Fst’, ‘Mdm’, ‘Slw’, ‘Mch’, ‘Vol’,
and ‘Pas’ denote the conditons of fast real motion, medium-speed real motion, slow real motion,
real motion matching the head rotation velocity, voluntary self-motion, and passive self-motion,
respectively.

part of the given instruction. The use of such an instruction was to encourage
the subject to keep about the same average speed of head rotation across the
trials. Within each trial, however, the actual speed of head rotation was not
constant. The actual grand average profile of speed is shown in Fig. 2b. Be-
cause the adapting motion’s direction was leftward (rightward) in the upper
(lower) visual field, the MAE was rightward (leftward) in the upper (lower)
visual field. The duration of the test phase was dependent on the head move-
ment. Once their heads had been rotated to the leftmost side, subjects were
required to report which of the two test gratings appeared to move relatively
faster than the other by pressing the UpArrow or DownArrow key. This key-
press would terminate the test phase by changing the fixation point to black
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and start the next top-up adaptation phase by resuming the physical drifts of
the two gratings. Subjects adapted to the drifting gratings for 10 more seconds
while keeping their heads still. Afterwards, the fixation point turned red again.
Subjects then rotated their heads in approximately the same way to the right-
most side, and were presented with the test probe. Once their heads reached
the rightmost side, they made a response, which again triggered the next top-
up adaptation phase. They repeated this top-up procedure until they finished a
total of 30 trials per session.

In the head-still condition, the stimuli and task were the same as in the
head-movement condition, except that subjects kept their heads still all the
time. Each subject completed two head-movement sessions and two head-still
sessions, with the session sequence counter-balanced both within and between
the subjects.

2.1.2.2. Analysis. For the head-movement condition, we computed the pro-
portion of trials in which the congruent grating was perceived as moving faster
than the incongruent grating. This index was referred to as ‘percent congru-
ent’. For the head-still condition, there was not a congruent direction because
there was no head rotation during the test phases. Therefore, we computed
the proportion of trials in which the leftward-or rightward-drifting grating
was perceived as moving faster, respectively. The latter proportion (i.e., right-
ward reported faster) was statistically compared to the chance level (50%).
Before the statistical comparison, we conducted a Shapiro–Wilk test to exam-
ine normality of the data, which was also done for the other conditions and
experiments. If normality could not be proved, a Wilcoxon signed-rank test
(two-tailed) would be used for the statistical comparison and the effect size
(r) would be assessed. If the comparison between the ‘percent rightward’ and
the chance level did not show a significant difference, the chance level would
serve as baseline for simplicity, and the percent congruent values in the head-
movement condition would be compared to the chance level.

2.1.3. Experiment 1b: Real Motion
If we observed a direction-specific effect of head rotation on the perceived
velocity of MAE, one might question whether a similar modulation could
be found in real motion. Thus, Experiment 1b examined the influences of
head rotations on the perceived velocity of real motion. No adaptation phase
was involved in this experiment (Fig. 1c). Subjects made head rotations back
and forth. During each single head rotation, they were presented with two
horizontally drifting gratings that moved in the opposite directions. As in Ex-
periment 1a, we also required the subjects to make a binary judgment: Which
of the two gratings moved faster. If head rotation also modulated the perceived
velocity of real motion in a direction-specific manner, we would expect the
subjects to report one particular test grating moving faster than the other one
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in a major proportion of trials. We also examined whether the effects of head
rotation showed a similar pattern for real motion with different velocity or not.

2.1.3.1. Stimuli and Procedure. Four different velocity conditions were
tested, 11.59°/s (fast), 2.32°/s (medium), 0.58°/s (slow), and the same real-
time velocity as the head rotation (matched). The fast, medium and slow
velocities were determined arbitrarily during a pilot experiment which cov-
ered a reasonably wide range from the velocity approximating the perceived
velocity of MAE (based on one author’s experience) to the velocity of the
rapidly moving adapters in Experiment 1a. The matched condition was in-
cluded because we were interested whether head movements had any special
influence on the real motion that had the same real-time velocity as head ro-
tation. The stimulus parameters were similar to those in Experiment 1a. Each
session included 30 trials. Subjects were told to maintain a good central fixa-
tion throughout a session.

In the head-movement condition, the head position was always at the right-
most side in the beginning of a session. Subjects pressed the space bar to
start a trial. Immediately after the keypress, the two gratings started to drift
horizontally in the opposite directions, and the subjects rotated the heads to
the left. The drifting directions of the gratings were fixed within a trial but
pseudo-randomized across the trials. Once the heads reached the leftmost side,
subjects pressed the UpArrow or DownArrow key to report which of the two
gratings appeared to move faster. After the keypress, the gratings disappeared,
and the display was replaced with a whole-screen white noise image counter-
phase flickering at 10 Hz for 5 s to avoid any residual MAE between successive
trials. Thereafter, the subjects pressed the space bar to start the second trial.
Meanwhile, they rotated the heads from the leftmost side to the right. This
procedure was repeated for 30 trials.

In the head-still condition, the stimuli and task were the same as in the
head-movement condition, except that subjects kept the heads still all the time.
Each subject completed two head-movement sessions and two head-still ses-
sions, with the session sequence counter-balanced both within and between
the subjects.

The stimulus parameters and procedure for the matched condition were
identical to those of the other velocity conditions except the following. The
drifting velocity of the gratings were identical to that of the head rotation in
real time. In the head-still condition, the drifting speed of the gratings was
the average velocity of head rotation in its preceding head-movement session.
Each subject completed five sessions, including three head-movement sessions
and two head-still sessions. The session order was HM–HS–(HM)–HS–HM
in half the subjects and (HM)–HS–HM–HM–HS in the rest of subjects, where
HM and HS were the abbreviations of ‘head movement’ and ‘head still’. The
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HM sessions in the parentheses were only used to provide the average velocity
of head rotation for their following HS sessions.

The same analysis was performed as in Experiment 1a.

2.2. Experiment 2

One concern in Experiment 1a was whether the subjects had a response bias
during the head rotation. To rule out this alternative explanation, we conducted
Experiment 2 where in most trials the test gratings were physically static but
the subjects were instructed that the gratings were moving in the same way as
in Experiment 1a but extremely slowly. The response bias explanation would
predict the same result pattern in this experiment as in Experiment 1a.

2.2.1. Participants
The same group of participants in Experiment 1a participated in Experi-
ments 2.

2.2.1.1. Stimuli and Procedure. The stimuli and procedure were the same as
in Experiment 1b except the following. Each session included 35 trials. In 5
of these trials, the gratings drifted at 0.58°/s. In the other 30 trials, the gratings
were in fact stationary, though the subjects were told that in all the trials the
grating in the upper visual field drifted extremely slowly to the right, and the
grating in the lower visual field drifted extremely slowly to the left. The 5 trials
with slow physical motion were used to encourage the subjects to believe the
instruction and to engage sufficient attention during the experiment.

2.2.1.2. Analysis. The analysis was the same as in Experiment 1a. However,
we only analyzed the data for the 30 trials where the gratings were physically
static.

2.3. Experiment 3

If voluntary head rotation gave rise to a direction-specific effect on the per-
ceived velocity of the MAE and real motion, was it due to an efference copy
signal generated in motor programming (Sperry, 1950; von Holst and Mittel-
staedt, 1950)? Therefore, Experiment 3 replicated all the sub-experiments of
Experiment 1 and included both the voluntary and passive head movement
conditions.

In the voluntary condition, subjects sat in a swivel chair and used their feet
and legs to rotate the swivel chair back and forth. In this way, their heads ro-
tated in space but kept still relative to their bodies. The voluntary condition was
slightly different from the head movement condition in Experiment 1, making
it easier to directly compare the voluntary and passive conditions. In the pas-
sive condition, the subjects sat still in the swivel chair while an experimenter
rotated the chair back and forth. In other words, the subjects’ heads rotated in
space passively (i.e., without voluntary motor actions). As the subjects were

Downloaded from Brill.com02/27/2020 04:05:46PM
via free access



J. Bai et al. / Multisensory Research 33 (2020) 189–212 199

not allowed to move their feet away from the ground (for a better control of
rotation), the angular range of head rotations in space was a bit narrower than
that in Experiment 1.

Because the percent congruent did not show a significant difference from
the chance level in the head-still condition in Experiment 1 (see the Results
section), we did not include a head-still condition in Experiment 3 (otherwise
the subjects would be too tired).

2.3.1. Participants
Twenty normal adults (ten females, ten males, age range 18–24 years) par-
ticipated in Experiments 3. Eight of them had participated in Experiments 1a
and the three constant-velocity conditions of Experiment 1b. Ten of them were
tested in the matched condition of Experiment 1b.

2.3.2. Experiment 3a: MAE
2.3.2.1. Analysis. The chance level served as baseline. The percent congru-
ent values in both the voluntary and passive conditions were compared to the
chance level with a Wilcoxon signed-rank test (two-tailed).

Since the voluntary condition in Experiment 3 largely resembled the head
movement condition in Experiment 1, we performed a replication Bayes factor
analysis (Verhagen and Wagenmakers, 2014) using the ReplicationBF package
in RStudio (Harms, 2018; RStudio Team, 2016) to verify whether the findings
for the head-movement condition in Experiment 1 were well replicated in Ex-
periment 3.

2.3.3. Experiment 3b: Real Motion
2.3.3.1. Stimuli and Procedure. Except for the voluntary and passive self-
motion conditions, the parameters of the stimuli and procedure were identical
to those in Experiment 1b. The same analysis was performed as in Experi-
ment 3a.

3. Results

3.1. Normality Check

We tested the normality of the data using Shapiro–Wilk tests. The results
are listed in Table 1. In quite a few conditions, normality was not proved
(p < 0.05). Therefore, we used the Wilcoxon signed-rank tests (one-sample
or paired) for statistical comparisons in all the experiments, and calculated the
Spearman’s rank correlation coefficient (Spearman’s ρ). The t-test and Pear-
son’s correlation results are reported in the Supplementary Materials.

3.2. Velocity and Angle Range of Head Rotation

The grand average velocity and angular range of head rotation in space are
plotted in Fig. 2a. The angular range data for the first (in Experiments 1 and 2)
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Table 1.
The results (p-values) of Shapiro–Wilk tests

Measurement Experiment &
condition

Sub-experiment or condition

a b-Fst b-Mdm b-Slw b-Mch

Response percentage Exp. 1 HS 0.044∗ 0.520 0.319 0.175 0.087
HM 0.042∗ 0.039∗ 0.508 0.663 0.032∗

Exp. 2 HS 0.865
HM 0.426

Exp. 3 Vol 0.020∗ 0.110 0.732 0.074 0.001∗
Pas 0.006∗ 0.036∗ 0.886 0.062 0.040∗

Head rotation velocity Exp. 1 HM 0.486 0.370 0.117 0.633 0.159

Exp. 3 Vol 0.419 0.664 0.080 0.728 0.454
Pas 0.315 0.902 0.896 0.965 0.631

∗p < 0.05 means violation of normality.
Fst, fast; Mdm, medium; Slw, slow; Mch, matched; HS, head still; HM, head movement;

Vol, voluntary; Pas, passive.

or two (in the matched condition of Experiment 3) subjects were missed due
to a programing mistake.

3.3. Experiment 1

3.3.1. Experiment 1a: MAE
For the head-still condition, we first computed the proportion of trials in
which the leftward- or rightward-drifting grating was perceived as moving
faster, respectively. The proportion of rightward being reported faster was then
compared to the chance level (50%) by using a Wilcoxon signed-rank test,
which did not show a significant difference (Md = 45.83%, Z = 1.88, p =
0.061, r = 0.419; the average proportion for rightward motion was 44.08% ±
13.23%, see Fig. 3a). The non-significant trend was largely due to the subjects’
bias, especially that of subject #11. Data normality was basically regained
(Shapiro–Wilk test, p = 0.110) after this subject’s data were removed, and the
statistics of the comparison remained non-significant (Z = 1.61, p = 0.107,
r = 0.370).

Since the response proportion in the head-still condition was not signifi-
cantly different from the chance level (50%), the percent congruent data in
the head-movement condition was then compared to the chance level with
a one-sample Wilcoxon signed-rank test. The results showed that in most
cases subjects reported seeing faster congruent gratings rather than incongru-
ent gratings (Md = 76.26%, Z = 3.92, p < 10−4, r = 0.877). On average, the
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Figure 3. The graph in (a) shows the proportion of trials in which the rightward drifting grating
was perceived as moving faster in the head-still condition. In the present study, a grating was
considered ‘congruent’ if its drifting direction was consistent with the usual direction of retinal
motion induced by head rotation in everyday life. The index ‘percent congruent’ was defined
as the proportion of trials in which the congruent grating was perceived as moving faster than
the incongruent grating. The graph in (b) shows the grand average percent congruent value in
Experiments 1 and 2. Each cross represents a subject. The bars show the grand average data. The
asterisks indicate significant differences from the chance (50%) level (p < 0.05 for the single
asterisk, p < 0.01 for the double asterisks). Error bars represent standard errors of means. ‘Fst’,
‘Mdm’, ‘Slw’, and ‘Mch’ denote the conditions of fast real motion, medium-speed real motion,
slow real motion, and real motion matching the head rotation velocity, respectively.

congruent gratings appeared to be faster in 77.21% (SD = 15.32%) of trials
(see Fig. 3b).

Statistical results for all the experiments are also listed in Table 2.

3.3.2. Experiment 1b: Real Motion
For all the four real-motion conditions when the head was still, the proportion
of rightward being reported faster did not differ significantly from the chance
level (50%) according to the t-test comparison (see Fig. 3a and Table 2 for
detailed statistics).

Accordingly, the percent congruent data in the head movement condition
was then compared to the chance level with a Wilcoxon signed-rank test.
Unlike Experiment 1a, the results for the fast and medium-speed conditions
revealed that in most trials subjects reported seeing faster incongruent gratings
instead of congruent gratings; whereas the result for the slow speed condition
showed the same pattern as in Experiment 1a (see Fig. 3b and Table 2 for
detailed statistics).

Downloaded from Brill.com02/27/2020 04:05:46PM
via free access



202 J. Bai et al. / Multisensory Research 33 (2020) 189–212

Table 2.
The summary of the statistics (non-parametric) for all the experiments

Experiment &
condition

Sample
size

Percent rightward/
percent congruent (%)

Difference from
chance level (50%)

Correlation between
rotation velocity and

percent congruent

M SD Md Z p r ρ p

1a HS 20 44.08 13.23 45.83 1.88 0.061 0.419 – –
HM 20 77.21 15.32 76.26 3.92 <10−4∗∗ 0.877 0.58 0.007∗∗

1b-Fst HS 20 50.17 16.11 49.17 0.22 0.824 0.050 – –
HM 20 14.26 9.86 12.50 3.92 <10−4∗∗ 0.877 0.10 0.679

1b-Mdm HS 20 47.92 12.42 46.67 1.18 0.239 0.263 – –
HM 20 38.5 18.37 39.17 2.32 0.021∗ 0.518 0.25 0.282

1b-Slw HS 20 46.33 13.55 45.00 1.16 0.244 0.260 – –
HM 20 63.79 19.18 65.00 2.58 0.010∗∗ 0.576 0.10 0.686

1b-Mch HS 10 49.50 12.84 51.67 0.36 0.720 0.113 – –
HM 10 15.60 14.10 15.00 2.68 0.007∗∗ 0.847 0.32 0.362

2 HS 20 50.92 9.20 50.83 0.52 0.600 0.117 – –
HM 20 54.17 12.24 51.96 0.89 0.372 0.200 – –

3a Vol 20 76.00 16.21 77.50 3.61 <0.001∗∗ 0.806 0.52 0.020∗
Pas 20 76.15 16.12 78.14 3.55 <0.001∗∗ 0.793 0.56 0.010∗

3b-Fst Vol 20 11.58 8.09 11.19 3.92 <10−4∗∗ 0.877 0.13 0.585
Pas 20 16.71 10.27 13.45 3.92 <10−4∗∗ 0.877 0.01 0.982

3b-Mdm Vol 20 26.31 14.00 24.28 3.74 <0.001∗∗ 0.837 0.05 0.848
Pas 20 30.44 16.20 28.97 3.50 <0.001∗∗ 0.783 0.12 0.604

3b-Slw Vol 20 52.89 22.63 57.50 0.85 0.398 0.189 0.15 0.541
Pas 20 52.60 19.07 54.70 0.71 0.478 0.159 0.09 0.710

3b-Mch Vol 20 25.32 22.35 19.17 3.17 0.002∗∗ 0.710 −0.02 0.942
Pas 20 28.06 21.14 21.13 3.21 0.001∗∗ 0.718 −0.33 0.160

∗p < 0.05; ∗∗p < 0.01.
Fst, fast; Mdm, medium; Slw, slow; Mch, matched; HS, head still; HM, head movement;

Vol, voluntary; Pas, passive. M, mean; SD, standard deviation; Md, median.

To examine whether the effects for the MAE in Experiment 1a and slow
real-motion condition in Experiment 1b were equally strong or not, we further
compared the percent congruent data between the two conditions. Interest-
ingly, we found that the percent congruent values in Experiment 1a (77.21% ±
15.32%, Md = 76.26%) were significantly higher than those (63.79% ±
19.18%, Md = 65.00%) for the slow real-motion condition (Z = 2.30, p =
0.022, r = 0.363), indicating a stronger effect for the MAE.

3.4. Experiment 2

Because for the head-still condition the proportion of rightward being re-
ported faster did not differ significantly from the chance level (see Fig. 3a and
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Table 2), the percent ‘congruent’ data in the head-movement condition were
then compared to the chance level. However, we did not find a significant
difference between them (see Fig. 3a and Table 2 for detailed statistics). On av-
erage, the ‘congruent’ gratings appeared to be faster in 54.17% (SD = 12.24%)
of trials (see Fig. 3b). Note that the word ‘congruent’ is in quotes because the
‘congruent’ gratings in this experiment were actually stationary. They were
defined as ‘congruent’ based on the instruction.

This result suggested that the finding in Experiment 1a was very unlikely
due to a response bias during head rotation.

3.5. Experiment 3

3.5.1. Experiment 3a: MAE
Similar to the results in Experiment 1a, the congruent MAE was perceived
as moving faster in most trials (see Fig. 4 and Table 2 for detailed statistics).
Therefore, the finding of Experiment 1a was replicated in both the voluntary
and passive conditions. Moreover, the percent congruent data were compa-
rable between the voluntary and passive conditions (Z = 0.55, p = 0.584,
r = 0.087).

3.5.2. Experiment 3b: Real Motion
Similar to the results of Experiment 1b, the subjects predominantly reported
perceiving the incongruent gratings as moving faster in the fast and medium-
speed real-motion conditions (see Fig. 4 and Table 2). However, the subjects
did not show a clear predominance to perceive which grating was moving
faster in the slow real-motion condition (see Fig. 4 and Table 2 for detailed

Figure 4. The graph in (a) shows the grand average percent congruent values in Experiment 3.
The asterisks indicate significant differences from the chance (50%) level (p < 0.05 for single
asterisk, p < 0.01 for double asterisks). The open circles and crosses represent individual data.
The error bars represent standard errors of means. Here, ‘Fst’, ‘Mdm’, ‘Slw’, ‘Mch’, ‘Vol’, and
‘Pas’ denote conditons of fast, medium, slow, match, voluntary, and passive, respectively.
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statistics). Except in the fast real-motion condition (Z = 2.39, p = 0.017,
r = 0.378), there were no significant differences of percent congruent values
between the voluntary and passive conditions (all ps > 0.31).

To compare the percent congruent data between Experiment 3a (MAE
test) and the slow real-motion condition in Experiment 3b, we performed a
2 (MAE vs. slow motion) by 2 (rotation type: voluntary vs. passive) repeated-
measurements ANOVA. The analysis revealed a significant main effect of
Experiment [F(1,76) = 31.13, p < 10−5]. However, neither the main effect
of rotation type [F(1,76) < 1, p = 0.99] nor the interaction [F(1,76) < 1,
p = 0.96] reached statistical significance. We then performed paired Wilcoxon
signed-rank tests between the two experiments for the voluntary and passive
conditions, respectively. In both conditions, the congruent gratings were per-
ceived as moving faster more frequently during the MAE test than during the
slow real motion test (voluntary condition, Z = 3.42, p < 0.001, r = 0.541;
passive condition, Z = 3.47, p < 0.001, r = 0.549).

3.6. Replication Bayes Factor Analysis

The results of the replication Bayes factor analysis are listed in Table 3. The
value of log10(BFr0) exceeded 2 for Experiment 3a, the fast, medium-, and
matched-speed real-motion conditions in Experiment 3b, indicating a deci-
sive (or extremely strong) support for the replication hypothesis (Kass and
Raftery, 1995). By contrast, the value of log10(BFr0) was between 1/2 and 1
[i.e., log10(BFr0) = − log10(BFr0) = 0.81] for the slow real-motion condition
of Experiment 3b, indicating a substantial (or medium) support for the null
hypothesis (Kass and Raftery, 1995). Therefore, the results of Experiment 3
replicated the findings in Experiment 1 well, except the slow real-motion con-
dition.

3.7. The Relationship Between Head Rotation Velocity and MAE

For all the experiments, we computed the correlation between the subjects’
percent congruent data and average velocities of head rotation. As shown in

Table 3.
Experiment 3 (voluntary condition) as a replication of Experiment 1

Sub-experiment t for Exp. 1 t for Exp. 3 log(BFr0)

a 7.94 7.17 6.94
b-Fst 16.20 21.24 20.62
b-Mdm 2.80 7.57 5.79
b-Slw 3.22 0.57 −0.81
b-Mch 7.72 4.94 3.41

Fst, fast; Mdm, medium; Slw, slow; Mch, match.
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Figure 5. The linear correlation between the percent congruent value and head rotation velocity
in each experiment. Each circle represents a subject. Solid lines show the linear fits on the indi-
vidual data. The red and blue lines represent significant correlations (p < 0.01 for the red line,
p < 0.05 for the blue lines), whereas the black lines represent non-significance. ‘Fst’, ‘Mdm’,
‘Slw’, ‘Mch’, ‘Vol’, and ‘Pas’ denote conditons of fast, medium, slow, matched, voluntary, and
passive, respectively.

Fig. 5, a significant correlation was observed only in the MAE conditions
(i.e., Experiment 1a and Experiment 3a, see Table 2 for detailed statistics),
suggesting that the subjects with faster head rotations showed higher percent
congruent values for the MAE but not for the real-motion stimuli.

Two possible explanations are provided for the correlation results. First,
Fig. 2a revealed that in most cases of an experiment head rotations covered a
similar angle range. Thus, faster average velocity of head rotation should relate
with stronger acceleration and deceleration of head movement. Because faster
head rotation corresponded to stronger vestibular input signal, and was found
here to be correlated with stronger modulation of the perceived velocity of
MAE (rather than the real motion), we propose that the MAE was modulated
by the vestibular signal in a more special and efficient way as compared to the
real motion. This explanation is in agreement with the notion that the MAE
is strongly related to visual–vestibular interaction, and is different from real
motion with respect to such interaction.

Alternatively, the correlation result may be contributed by the variance of
the test phase duration, since slower head rotation corresponded to a longer
test phase in the top-up adaptation paradigm, leading to a larger extent of
de-adaptation. It should be noted that this explanation also speaks against a
common vestibular modulation of the MAE and real-motion signals. Because
of the hypothetical effect of de-adaptation, the subjects with slower head ro-
tations (hereafter called ‘slow’ subjects) would show weaker MAE. Imagine

Downloaded from Brill.com02/27/2020 04:05:46PM
via free access



206 J. Bai et al. / Multisensory Research 33 (2020) 189–212

that the subjects kept their heads stationary, yet received exactly the same vi-
sual stimulation and adopted the same test phase durations as in Experiment
1a. Since the perceived velocity of an MAE is thought to reflect the magnitude
or strength of an MAE (Pantle, 1998), the influence of de-adaptation would
cause the ‘slow’ subjects to perceive slower MAE than the ‘fast’ subjects. If
head rotation affected both the MAE and real motion in a common manner,
an MAE signal would in theory be equivalent to a certain slow real-motion
signal in terms of the vestibular modulation. We could then expect that once
the subject rotated the head the percent congruent values for the ‘slow’ sub-
jects would be higher than those for the ‘fast’ subjects, because the results
for the real-motion conditions in Fig. 3b clearly showed that the percent con-
gruent value increased as the motion speed decreased. Accordingly, one may
expect to see a positive correlation between the percent congruent data and
test phase duration, or a negative correlation between the percent congruent
data and head rotation velocity. However, as shown in Fig. 5, this expectation
was contrary to the fact. Accordingly, the account of test phase duration also
agrees with the notion that the signals of MAE and real motion are modulated
differently by head rotation.

To evaluate which explanation accounted for the MAE-specific correlation
results better, we conducted a correlation analysis between the subjects’ per-
cent congruent data and test phase durations. No significant correlation was
found in Experiment 1a (Spearman’s ρ = −0.28, p = 0.240). In Experiment
3a, we found a significant negative correlation only in the passive condition
(Spearman’s ρ = −0.74, p < 0.001) but not the voluntary condition (Spear-
man’s ρ = −0.35, p = 0.130). These results generally indicated that the vari-
ation of test phase duration did not produce a determinative consequence of
de-adaptation. Therefore, our correlation results can be better accounted for
by a special and efficient visual–vestibular interaction on the MAE. Also, the
visual–vestibular interaction in the MAE was essentially different from that in
real motion, given both the MAE-specific correlation results and the distinct
pattern of percent congruent shown in Fig. 3b and Fig. 4.

4. Discussion

The present study investigated how head rotation affected the speed percep-
tion in illusory (MAE) and physical motion. We found that the MAE was
predominantly perceived as moving faster when its direction was opposite to
the direction of head rotation than when its direction was the same as head
rotation. However, a reversed pattern was observed for physical stimuli mov-
ing at a fast or medium speed. As to slow real motion, we obtained the mixed
results. A similar (though weaker) pattern like Experiment 1a was observed
in the slow-motion condition in Experiment 1b. However, this finding was not
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replicated in Experiment 3b where a null effect of head rotation was verified
by using a replication Bayes factor analysis. Experiment 2 verified that the ef-
fect for the MAE was not due to the subjective response bias during the head
rotation. Furthermore, Experiment 3 indicated that the modulation of head ro-
tation was not very likely due to efference copy signals (the only exception
was the fast real-motion condition).

For both Experiments 1 and 3, we examined the correlation between the
subjects’ percent congruent values and average velocities of head rotations.
Reliable positive correlations were observed in both the Experiments 1a and
3a where we tested the influences of head rotations on the MAE. However,
no significant correlations were found in the other sub-experiments where the
physical motion stimuli at different speed were tested. These MAE-specific
correlation results lend credence to the notion that an MAE-specific mecha-
nism underlies the findings in Experiments 1a and 3a. The phenomenon we
observed in Experiments 1a and 3a cannot be simply accounted for by the
modulation of head movement on speed perception that applies for both real
and illusory motion. Rather, it suggests distinct vestibular modulations of the
MAE.

Since the literature (Hogendoorn and Verstraten, 2013; Rühl et al., 2018;
Seiffert et al., 2003) has lent support to the notion that the MAE is repre-
sented in area MT+ (especially the MST), the velocity processing for the
MAE is likely executed there as well. To provide a comprehensive expla-
nation for the present findings, we propose a cross-modal bias hypothesis.
Specifically, the bias essentially reflects the way in which multisensory inte-
gration usually works. In human’s everyday life, a lot of retinal signals are
caused by self-motion. On the one hand, the neural system suppresses the
self-motion-induced retinal signals, in order to highlight the actual object mo-
tion signals in the environment (Miall and Wolpert, 1996; Wallach, 1987),
a consequence similar to the P&B-effect and freezing illusion (Mesland and
Wertheim, 1996; Pavard and Berthoz, 1977; Wertheim and Reymond, 2007).
This may explain the findings in the fast and medium-speed real-motion con-
ditions in Experiments 1b and 3b. On the other hand, the neural system may
learn to develop a natural association between the vestibular self-motion sig-
nals and the self-motion-induced retinal signals. Over a long time of life, the
association becomes so strong that the signals from one modality could pro-
duce a bias signal in a congruent direction for the other modality. The rationale
of establishing and expressing the association may be rooted in Hebb synap-
tic learning (Hebb, 1949). We hypothesize that the cross-modal bias signal is
relatively weak (to avoid substantial interferences with feed-forward signals
representing the real world more faithfully) and produced locally in the MST
area. This hypothesis has received some preliminary support from our empir-
ical observations. According to the hypothesis, in the real-motion condition
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the influence of the bias signal might be corrected or diluted to some extent
by feed-forward motion signals transmitted from earlier processing stages. By
contrast, the MAE signal is believed to arise locally in the MST, which has the
same origination as the bias signal. Accordingly, the hypothesis predicts that
the MAE may be more susceptible to the cross-modal bias signal than the real
motion. An extreme case is that the bias signal even participates in forming
the MAE. The above prediction was supported by the finding of significant
correlation between the percent congruent value and head rotation velocity in
Experiments 1a and 3a but not the other sub-experiments. Note that the same
correlation was not observed in the slow real-motion condition in Experiment
1b, even though the percent congruent value in that condition was also higher
than the chance level. Furthermore, according to the Bayesian context of mul-
tisensory integration (Fetsch et al., 2013; Gu et al., 2008; Knill and Pouget,
2004), the influences of either bias or bottom-up signals will depend on their
respective reliabilities. Thus, the influence of the bias signal on real motion
can be evident only as the veridical feed-forward signals are sufficiently weak
relative to the bias (i.e., sufficiently slow motion). This is because when strong
veridical feed-forward signals are present, intrinsic neural noise within the per-
ceptual system may cause the weak cross-modal bias signals to be overridden.
However, in practice, whether a certain slow real motion is sufficiently weak
or not depends on individual differences. This perhaps explains why the find-
ing of the slow real-motion condition in Experiment 1b was not replicated
in Experiment 3b, considering that the samples between the two experiments
were substantially non-overlapping. Future work should examine the reliabil-
ity of the signals for the real motion and MAE more closely to confirm this
hypothesis.

Our MAE-specific correlation results are less consistent with the princi-
ple of inverse effectiveness in multisensory integration that is proposed in
the research of audiovisual integration in cat superior colliculus (Meredith
and Stein, 1983; Stein and Stanford, 2008). The principle of inverse effec-
tiveness states that multisensory integration increases as unisensory responses
decrease (e.g., under low-intensity stimulation). Evidently, faster head rotation
corresponds to stronger vestibular signals. Interestingly, in Experiments 1a
and 3a such stronger unisensory responses were in relation with the more pro-
found consequences of multisensory integration (i.e., higher percent congruent
value), a violation of the principle of inverse effectiveness. Nevertheless, the
relationship between the principle of inverse effectiveness and the current ob-
servations awaits further investigations at both the behavioral and the neural
levels.

It should be noted that during the passive rotations involuntary micro-
movements of the head with respect to the trunk might occur occasionally,
though the subjects were instructed to remain stationary relative to the chair.
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Thus, our findings might be contributed by the integration of visual signals
with both vestibular and proprioceptive signals. However, the head yaw rota-
tions in the experiments were believed to be greater than the micro-movements
of the head on the trunk by a few orders of magnitude. Therefore, the po-
tential contribution from the proprioceptive signals was presumably minor as
compared to that from the vestibular signals. Future work with more sensors
will further examine to what extent the present phenomena are contributed by
visual–vestibular and (or) visual–proprioceptive interactions, which is beyond
the scope of the current work.

Finally, although our work is focused on visual–vestibular modulations of
the illusory motion, the cross-modal bias hypothesis we propose here can also
be extended to explain other interesting phenomena in audiovisual, audiotac-
tile and olfacto–visual integration (Lunghi et al., 2014; Shams et al., 2000;
Zhou et al., 2010). With more advanced neuroimaging technique developed in
the future, the underlying mechanisms for the cross-modal bias signal would
be further explored.
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