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The human visual system can efficiently extract distinct physical, biological, and social attributes (e.g. facing direction, gender, and
emotional state) from biological motion (BM), but how these attributes are encoded in the brain remains largely unknown. In the
current study, we used functional magnetic resonance imaging to investigate this issue when participants viewed multidimensional BM
stimuli. Using multiple regression representational similarity analysis, we identified distributed brain areas, respectively, related to the
processing of facing direction, gender, and emotional state conveyed by BM. These brain areas are governed by a hierarchical structure
in which the respective neural encoding of facing direction, gender, and emotional state is modulated by each other in descending
order. We further revealed that a portion of the brain areas identified in representational similarity analysis was specific to the neural
encoding of each attribute and correlated with the corresponding behavioral results. These findings unravel the brain networks for
encoding BM attributes in consideration of their interactions, and highlight that the processing of multidimensional BM attributes is
recurrently interactive.
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Introduction
Precisely perceiving and understanding multidimensional infor-
mation from other people’s movements play a vital role in our sur-
vival and social interaction (Yovel and O’Toole 2016). Bodily move-
ments contain plentiful and hierarchical attributes, including
physical attributes like direction and speed, biological attributes
like gender and age, and social attributes like affect and inten-
tion. Since the point-light biological motion (BM), which isolates
human body movements, was introduced by Johansson (1973), a
large body of research has revealed that the human visual system
can efficiently extract and process distinct physical, biological,
and social attributes from BM, such as facing direction (Saunders
et al. 2010; Wang et al. 2020), gender (Kozlowski and Cutting
1977; van der Zwan et al. 2009), and emotional state (Atkinson
et al. 2004; Clarke et al. 2005; Parkinson et al. 2017). Despite
that the ability to recognize and evaluate different BM attributes
has been well demonstrated at the behavioral level, it remains
largely unknown how the brain simultaneously encodes distinct
attributes from BM.

Previous studies have identified a large brain network
dedicated to BM processing, involving the posterior superior
temporal sulcus (pSTS), the middle temporal visual complex
(MT), the fusiform gyrus (FG), and portions of the frontal and
parietal cortex (Bonda et al. 1996; Grossman and Blake 2002;
Saygin 2004, 2007; Peuskens et al. 2005; Peelen et al. 2006;

Jastorff and Orban 2009; Grosbras et al. 2012; Thompson and
Parasuraman 2012; van Kemenade et al. 2012; Yovel and O’Toole
2016; Hirai and Senju 2020; Pitcher and Ungerleider 2021).
Among this distributed network, certain brain areas are found
to be crucial for the processing of some particular attributes
of BM. Facing direction perception is supported by FG (Michels
et al. 2009), primary somatosensory cortex, and inferior frontal
gyrus (IFG; De Lussanet et al. 2008). Emotional state perception
network mainly includes pSTS, FG, temporoparietal junction,
and superior frontal gyrus (SFG; Alaerts et al. 2014; Atkinson
et al. 2012; Goldberg et al. 2015; Jastorff et al. 2016, 2015; Poyo
Solanas et al. 2020). On the other hand, the perceptual and neural
representations of distinct BM attributes may not be independent
of each other, considering the mutidimensional nature of BM.
Indeed, a few behavioral studies have shown that the perception
of one BM attribute can be significantly modulated by the
processing of the other attribute(s). For instance, emotional states
conveyed by BM significantly affect its gender categorization
such that angry BMs are overwhelmingly judged to be men
while sad BMs are judged to be women (Johnson et al. 2011).
Gender information also affects the direction discrimination of
BM, with the direction discrimination being worse when the BM is
depicted as a male than a female (Yang et al. 2014). Based on these
observations, it is well expected that there exists a hierarchical
neural mechanism for processing multidimensional BM attributes
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in the brain. In the present study, we investigated how the brain
encodes multidimensional BM attributes and in what order
these processes are organized. In particular, whether different
attributes are extracted and represented in an independent or
feedforward manner (e.g. from physical to biological and social
attributes), or the processing of multidimensional attributes is
accomplished through a recurrently interactive means.

To investigate this issue, we used functional magnetic reso-
nance imaging (fMRI) to measure the hemodynamic response in
the brain when participants viewed the multidimensional BM
stimuli. Point-light walkers were employed as stimuli that pre-
serve facing direction, gender, and emotional state attributes. We
used representational similarity analysis (RSA, Kriegeskorte et al.
2008) because it has the unique advantage of isolating target
attributes from the multidimensional BM stimuli in the brain.
We first performed a multiple regression RSA to, respectively,
identify the brain network in response to each BM attribute.
Then we introduced the scrambled representational dissimilarity
matrices (RDMs) in RSA to further investigate how the neural
representations of BM attributes were influenced by each other.
We also used multivoxel pattern analysis (MVPA) methods (Edel-
man et al. 1998; Kriegeskorte et al. 2008) to explore whether
the brain areas identified by RSA were specific to the neural
encoding of BM attributes. Lastly, we analyzed the correlations
between behavioral results and neural responses by performing
an RSA with behavior RDMs. Our study unraveled a distributed
and hierarchical neural network dedicated to the neural encoding
of multidimensional BM attributes.

Materials and methods
Participants
In total, 24 neurologically normal volunteers (12 female, aged 21–
30 years) with normal or corrected-to-normal vision participated
in the study. Two participants were excluded due to excessive head
motion (>2 mm of maximal translation in any direction of x, y, or
z or 2◦ of any angular motion throughout the scan), and two addi-
tional participants were excluded due to their responses in behav-
ioral experiment (see below for details). Participants gave written
informed consent prior to participation in the study. The exper-
imental procedures were approved by the institutional review
board of the Institute of Psychology, Chinese Academy of Sciences.

Experimental design and stimuli
Stimuli
Stimuli were point-light BM sequences based on the motion cap-
ture data computed from 50 men and 50 women (https://www.
biomotionlab.ca/html5-bml-walker/, Troje 2002). Each stimulus
was represented by a set of 15 dots and subtended a visual
angle of 6.9o × 3.9o. We systematically manipulated the three
attributes of the stimuli, which were facing direction (left or
right), gender (female or male), and emotional state (happy or
sad) (Fig. 1A), leading to eight BM sequences. For facing direction,
the point-light walkers were represented in 45o or 135o view.
For gender and emotional state, corresponding parameters of
the point-light walkers were selected in ±6 standard deviation
increments from an average walker (stimulus 0; for details of the
metric and associated assumptions, Troje 2008, 2002). The stimuli
were presented as white dots against a black background, lasting
1 s in each walking cycle. Stimulus presentation and response
collection were controlled by Matlab (MathWorks, Inc.) together
with the Psychtoolbox extensions (Brainard 1997).

Behavioral experiment
We employed a behavioral experiment prior to the fMRI exper-
iment to test the participants’ abilities for discriminating each
attribute of BM. On each trial, one of the BM sequences was
presented at the upper center of the screen, and a question with
options was presented at the lower center of the screen. We used
the semantic differential scale, in which an adjective was paired
with its antonym, and the two adjectives are assigned numbers
on a scale from 1 to 7 (Osgood 1964). Participants were asked to
estimate where an attribute of the stimulus is placed on the scale.
For example, in a trial, the question was “what is the gender of the
person”, and the option “pretty confident it is a woman” was given
1, and “pretty confident it is a man” was given 7. Each of the eight
BM sequences was estimated by its facing direction, gender, and
emotional state four times, leading to a total of 96 trials. Behav-
ioral results were presented in Supplementary Material Table S1.
The participants who reached the following two exclusion criteria
were excluded and did not participate in the fMRI experiment:
(i) the behavioral results exceeded three-sigma limits in at least
one attribute; (ii) reporting “4—not sure” in >50% trials for at least
one attribute. According to the exclusion criteria, two participants
were excluded. One of them had the totally opposite judgment on
facing direction attribute, and the other one could not discrimi-
nate emotional state in more than half of the trials.

fMRI experiment
In the fMRI scanner, stimuli were back-projected onto a screen
(60 Hz frame rate, 1,024 × 768 pixels screen resolution) via a liquid
crystal projector and viewed through a mirror mounted on the
head coil. fMRI runs were arranged in a block design with each
run containing 24 blocks. Each block consisted of a BM sequence
lasting 12 s. In every 2 s, the BM stimulus had a spatial jitter
of 1o to reduce the potential adaptation effect (Dubois et al.
2015). Eight BM sequences were repeated three times in random
order and were interleaved by 6 s fixation blocks. Participants
completed six runs, and each run lasted 7 min and 18 s. To ensure
that the participant’s attention was focused on the stimulus
during scanning, the BM sequence was either forward-walking
or backward-walking and randomly changed 1—2 times in each
block (Fig. 1B). The participants were required to detect how many
times the walking direction of the BM sequence had changed
and answered by pressing one of the two keys on a keyboard
after the stimulus disappeared. All participants demonstrated
good performance, with a mean accuracy of 0.883 ± 0.013 and an
average reaction time of 1.004 ± 0.054 s. An additional group of
participants evaluated the facing direction, gender, and emotional
state attributes when the BM sequence was forward-walking or
backward-walking, which verified that walking directions did not
significantly influence the recognition of these attributes (see
Supplementary Material Table S2 for details).

fMRI acquisition
Functional and anatomical data were collected using a 3-Tesla
Siemens Prisma scanner at the Beijing Magnetic Resonance Imag-
ing Center for Brain Research. Functional data were collected
using a T2∗-weighted echo planar imaging sequence with the
following parameters: 78 axial slices (with multiband), repetition
time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip angle = 70o, field
of view (FOV) = 192 × 192 mm2, matrix size = 96 × 96, thickness/-
gap = 2/0 mm. Each fMRI session consists of 219 functional vol-
umes. A 3D T1-weighted magnetization-prepared rapid gradient
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Fig. 1. Stimuli, task, and RDMs. (A) Illustration of a single frame of the eight BM sequences. F: Female; M: Male; H: Happy; S: Sad; L: Left; R: Right. (B)
Schematic representation of the fMRI experiment. (C) Theoretical RDMs for each attribute. 0 means within category and 1 means between categories.
(D) V1 RDM calculated by the HMAX model.

echo (MP-RAGE) image was acquired with the following param-
eters: 128 sagittal slices, TR = 2,600 ms, TE = 3.02 ms, inversion
time (TI) = 900 ms, flip angle = 8o, FOV = 256 × 224 mm2, matrix
size = 256 × 224, slice thickness/gap = 1/0 mm.

Preprocessing and general linear model analysis
The fMRI data were preprocessed using statistical parametric
mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/, Wellcome
Center for Human Neuroimaging, London, United Kingdom). The
first three volumes were discarded to avoid T1 saturation. Then
the functional images were corrected for slice acquisition time
and head motion, and co-registered with the T1 anatomical image.
Next, anatomical images were spatially normalized to the Mon-
treal Neurological Institute template, and normalization parame-
ters were applied to the functional images.

After preprocessing, we applied traditional general linear
model (GLM)-based analysis. For each participant and each run,
beta weights of the experimental conditions were estimated using
design matrices containing predictors of the eight stimuli and six
head motion parameters in a gray matter mask. An absolute
threshold masking value of 0.2 was applied to avoid possible
edge effects between different tissue types (Ashburner 2007). The
resulting SPMT images for the eight stimuli were used for RSA
(Salmela et al. 2018). The beta weights for 8 stimuli × 6 runs were
used for the MVPA (Turner et al. 2012).

Multiple regression RSA
To investigate which brain areas were in response to the three
attributes of BM, we employed a multiple regression RSA with a
searchlight approach using CoSMoMVPA toolbox (Oosterhof et al.
2016). Firstly, we created theoretical RDMs for each attribute of the
stimuli (Fig. 1C). Each RDM was an 8 × 8 binary matrix in which
1 corresponded to a between-category stimulus comparison (e.g.
male vs. female for gender discrimination) and 0 corresponded to
a within-category stimulus comparison (e.g. female vs. female for
gender discrimination). This procedure resulted in three theoreti-
cal RDMs corresponding to facing direction, gender, and emotional

state attributes of the stimuli. To exclude the influence of low-
level visual properties such as retinotopic shape biases across our
stimulus categories, we added another predictor based on a model
of V1 cortical neurons to the multiple regression RSA. We used the
C1 units of hierarchical max-pooling (HMAX) model (Riesenhuber
and Poggio 1999) to simulate every BM sequence as the V1 cortical
response using software provided by the Center for Biological &
Computational Learning at Massachusetts Institute of Technology
(http://cbcl.mit.edu/software-datasets/). Because processing by
the units is approximated as essentially instantaneous in HMAX
model (Serre et al. 2007), we first modeled each frame of the
BM sequence and then averaged the response of each frame.
Then we derived the V1 RDM using 1—Pearson correlation as a
measure of dissimilarity (Fig. 1D). Additionally, we analyzed the
correlations between three theoretical RDMs and V1 RDM (Fig. 1).
The correlation between V1 RDM and the theoretical RDMs is
0.21 for facing direction, 0.68 for gender, and 0.27 for emotion,
respectively.

Next, we calculated the neural RDM. In each searchlight, we
created a neural representational similarity matrix (RSM) by cal-
culating the Pearson correlation between the SPMT maps from
every item pair and then converting the neural RSM into neural
RDM using 1—Pearson correlation. After that, we performed the
multiple regression RSA using the three theoretical RDMs and the
V1 RDM as the independent variables and the neural RDM as the
dependent variable. This method can identify the brain maps for
the processing of one attribute and, meanwhile, exclude the influ-
ence from the other attributes and low-level visual properties.
We conducted the multiple regression RSA for each participant
within the gray matter mask using a searchlight approach, with
each searchlight consisting of 200 voxels (Anderson et al. 2015;
Thornton and Mitchell 2017; Liuzzi et al. 2020). The resulting
correlation values for each predictor were assigned to the cen-
tral node of each searchlight, leading to a correlation map for
each attribute, separately for each participant. Additionally, we
conducted an RSA only with the V1 RDM as a predictor to verify
that this model represents the primary visual cortex activity for
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the BM sequence (see Supplementary Material Fig. S1 for details).
We also conducted an RSA with the three theory RDMs but
without the V1 RDM as predictors. Results showed similar cortical
maps for each attribute except the visual network (Fig. S2 in
Supplementary Material). All RSA results were Fisher transformed
and then conducted one-sample t-tests. Statistical maps were
corrected for multiple comparisons using a cluster-based Monte
Carlo simulation algorithm as implemented in the CoSMoMVPA
toolbox. We used a threshold of P = 0.001 at the initial voxel-wise,
and 5,000 iterations of Monte Carlo simulations (Forman et al.
1995; Goebel et al. 2006). For visualization, maps were projected
on a cortex surface of the BrainNet toolbox (Xia et al. 2013).

Scrambled RDM-based RSA and dice coefficient
analysis
We further investigated how the neural encoding of an attribute
is influenced by that of the other two attributes. To do this, we
carried out a new set of multiple regression RSAs for the three
attributes, respectively. In these RSAs, the target theoretical RDM
remained unchanged, and the other two theoretical RDMs were
shuffled randomly (Carlson et al. 2013; Liang et al. 2013; Bayet
et al. 2020). For example, for the gender attribute, we scram-
bled the facing direction and emotional state RDMs but retained
the theoretical RDM of gender, then recalculated the multiple
regression RSA with the searchlight approach. This process was
repeated 1,000 times for each attribute and each participant, and
the resulting correlation map was transformed into a z-score.
Then all the z maps were averaged for each attribute and each
participant. After that, the results were entered into one-sample
t-tests for each attribute, respectively, and corrected by 5,000
iterations of Monte Carlo simulations, resulting in the group-level
maps. Note that the above brain map each reflected the process-
ing of an attribute without excluding the implied influence from
the processing of the other attributes.

Then we used the Dice coefficient (DC; Dice 1945) to assess
the degree of overlap between the group-level statistic maps of
the multiple regression RSA and the RSA with scrambled RDM
for each attribute (Gorgolewski et al. 2013; Sair et al. 2016). The
formula of DC is 2 × NC/(N1 + N2), where NC is the number of
voxels the two statistics maps share in common, N1 is the number
of voxels in the first map, and N2 is the number of voxels in the
second map. DC ranges from 0 to 1, where 1 indicates complete
congruence between the number and location of voxels in both
threshold maps, while 0 indicates no congruence (Dice 1945; T.A.
Sørensen 1948). We used this analysis to evaluate the extent to
which the neural encoding of one attribute is modulated by that
of the other two. Specifically, if the processing of an attribute is
completely not influenced by the others, the brain maps of the
multiple regression RSA and the RSA with scrambled RDM would
perfectly overlap, leading to a DC of 1. On the contrary, if the
processing of an attribute is dependent with the processing of the
others, the brain maps of the multiple regression RSA and the RSA
with scrambled RDM would have no overlapped areas, leading to
a DC of 0. Between 0 and 1, the smaller the influence of other
attributes, the larger the DC value will be.

Multivoxel pattern analysis
We used MVPA to measure whether the significant clusters iden-
tified by multiple regression RSA were specific to the neural
encoding of the corresponding BM attributes. We first extracted
the beta map of 8 stimuli × 6 runs from GLM analysis, resulting
in a total of 48 beta maps for each participant. These beta maps
were split into two parts corresponding to the categories for facing

direction (left vs. right), gender (male vs. female), and emotional
state (happy vs. sad), respectively. For example, when classifying
gender, the 48 beta maps were split into 24 female beta maps
and 24 male beta maps. Then we conducted the MVPA for each
attribute and each participant within the gray matter mask using
a searchlight approach, with each searchlight consisting of 200
voxels. On each searchlight, we demeaned the data by subtracting
the mean beta value from each beta value of the individual voxel
to reduce the amplitude effects of different conditions. We used
a leave-one-run-out cross-validation method, so that for each
iteration, we trained a linear support vector machine (Chang and
Lin 2011) classifier using data from five fMRI runs and tested the
classifier with the data from the one remaining run. After that,
a whole-brain map for each participant was defined in which
the center voxel of each searchlight was labeled according to
classification accuracy, and then the classification accuracy of
each cluster identified by multiple regression RSA was defined
as the mean classification accuracy of all voxels located in this
cluster (the whole-brain searchlight MVPA results were presented
in Supplementary Material Fig. S3). The clusters’ accuracies were
entered into a one-sample t-test against chance (50%, Fuelscher
et al. 2019; Lee et al. 2012; Sapountzis et al. 2010). We also used
paired t-test to compare the clusters’ accuracies between the
two attributes pairs and corrected the results by FDR correction
(P < 0.05). Results were projected on a cortex surface of the Brain-
Net toolbox on three levels: (i) the classification accuracy of the
corresponding attribute is significantly above chance level, (ii)
the classification accuracy of one attribute is significantly higher
than one of the other attributes, (iii) the classification accuracy
of one attribute is significantly higher than both of the other two
attributes.

RSA between neural and behavioral RDMs
We investigated whether the fMRI results were related to behav-
ioral judgments. To this end, we used the responses obtained
in the behavioral experiment to define the behavioral RDM for
each participant. We derived the behavioral RDM of each attribute
by using the Euclidean distance as the distance metric of the
judgments between each pair of stimuli. Then we conducted an
RSA with behavioral RDMs as predictors in each cluster identified
in multiple regression RSA for each participant, respectively. Then,
the results were Fisher transformed and entered into a one-
sample t-test and corrected by FDR correction (P < 0.05) across
clusters.

Results
Brain networks for encoding different BM
attributes
The multiple regression RSA revealed the brain regions encoding
facing direction, gender, and emotional state (Fig. 2; corrected by a
cluster-based Monte Carlo simulation with a threshold of P = 0.001
at the initial voxel-wise and 5,000 iterations). Specifically, the
brain regions encoding the facing direction information involved
the bilateral lingual gyri (Brodmann areas [BA] 17), left middle
occipital gyrus (MOG, BA 37), right supper occipital gyrus (SOG,
BA18), bilateral FG (BA 18), bilateral middle temporal gyri (MTG,
BA 19), left inferior parietal lobules (IPL, BA 40), bilateral superior
parietal lobes (SPL, BA 7), bilateral postcentral gyri (BA 3), bilateral
precentral gyri (BA 4), left supplementary motor area (SMA, BA 6),
bilateral insula (BA 13), bilateral IFG (BA 47), and right anterior
cingulate cortex (ACC, BA 10; Fig. 2A). The brain regions encoding
the gender information involved the right lingual gyrus (BA 17),
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Fig. 2. RSA results of multiple regression and random results. Group-level results of the searchlight-based multiple regression RSA of facing direction
(A), gender (B), and emotional state (C). The group-level results of 1,000 times random RSA results of facing direction (D), gender (E), and emotional state
(F). The light purple color shows the results of multiple regression RSA. The green color shows the random RSA results. The dark purple color shows the
overlapping results of multiple regression RSA and random RSA. DC between the multiple regression RSA maps and the random RSA maps. Statistical
maps show the clusters after Monte Carlo simulations (P = 0.001 at the initial voxel-wise, 5,000 iterations).

bilateral FG (BA 37), right inferior temporal gyrus (ITG, BA 37), left
MTG (BA 19), right pSTS (BA 22), left IPL (BA 40), bilateral post-
central gyri (BA 2), right SMA (BA 6), bilateral insula (BA 13), right
IFG (BA 47), and bilateral MFG (BA 6, Fig. 2B). The brain regions
encoding the emotional state information involved the bilateral
lingual gyri (BA 17, 18), bilateral IOG (BA 18), bilateral MOG (BA 19),
bilateral SOG (BA 7, 18, 19), bilateral FG (BA 19), bilateral ITG (BA
37), bilateral MTG (BA 39), bilateral IPL (BA 40), bilateral SPL (BA
7), bilateral postcentral gyri (BA 3), bilateral precentral gyri (BA 6),
left SMA (BA 6), right IFG (BA 46), bilateral MFG (BA 6), and right
SFG (BA 11), left putamen (BA 48, Fig. 2C). These results together
demonstrated that the respective neural encoding of the facing
direction, gender, and emotional state information embedded in
BM stimuli involved considerably overlapping brain regions, which
raised the possibility that the neural representations of the three
attributes of BM might be shared and possibly interact with each
other.

Hierarchical neural encoding among the three
BM attributes
We further investigated how the neural encoding of an attribute
is influenced by that of the other attributes. To do this, for each
attribute, we conducted a new searchlight multiple regression
RSA in which the theoretical RDM of the target attribute remained
unchanged, and the other two theoretical RDMs were scrambled.
This procedure was repeated 1,000 times and then the results
were averaged. If the neural encoding of the target attribute is
influenced by the processing of the other two attributes, then the
beta value for the target attribute would be different between the
RSA results before and after scrambling manipulation, resulting
in a variation in the identified statistic maps by the searchlight
approach. DCs evaluated the extent to which the neural encoding
of one attribute is modulated by that of the other two. Figure 2

shows the DC for the pairs of analyses before and after scrambling
manipulation on group-level threshold statistic maps. The DC
is 0.394 for facing direction (Fig. 2D), 0.442 for gender (Fig. 2E),
and 0.751 for emotional state (Fig. 2F). These results demon-
strated that the neural encodings of all attributes were influ-
enced by each other to some extent, that is, the neural encodings
of the three attributes were recurrently interactive. Among the
three attributes, the variations of their neural encodings, inversely
related to the DC values, before and after scrambling manipu-
lation were in descending order for facing direction, gender, and
emotional state.

Brain areas specific to the classifications of BM
attributes
To further explore whether the brain areas in the BM attribute
encoding networks were specific to the corresponding attribute
classifications, we performed MVPA on the clusters revealed in
RSA to measure the classification accuracies for discriminating
the three attributes. On most clusters, the classification accu-
racies for the corresponding attribute were significantly above
chance level (50%). A portion of the brain areas showed sig-
nificantly higher classification accuracies for the corresponding
attribute than for the other attributes. We displayed the statistical
results on brain maps (Fig. 3). In the facing direction encoding net-
work, classification accuracies were significantly above chance
level in the bilateral lingual gyri (BA 17), left MOG (BA 37), right
SOG (BA 18), bilateral MTG (BA 19), bilateral FG (BA 18), bilateral
SPL (BA 7), bilateral postcentral gyri (BA 3), left precentral gyrus
(BA 4), left SMA (BA 6), bilateral insula (BA 13), right IFG (BA
47), and right ACC (BA 10, P < 0.05, FDR correction). Among these
regions, the classification accuracies of facing direction were
significantly higher than one of the other two attributes in the
left MOG (BA 37), left SPL (BA 37), bilateral postcentral gyri (BA 3),
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Fig. 3. MVPA results in the significant clusters defined in RSA of facing direction (A), gender (B), and emotional state (C). The light colors mean the
classification accuracy was significantly higher than chance level (50%). The medium colors mean the classification accuracy was significantly higher
than one of the other attributes. The dark colors mean the classification accuracy was significantly higher than both of the other two attributes. Results
were corrected by FDR correction (P < 0.05).

left precentral gyrus (BA 4), left SMA (BA 6), and left insula (BA
13), and significantly higher than both of the other two attributes
in the left MTG (BA 19), right SOG (BA 18), bilateral lingual gyri
(BA 17), and bilateral FG (BA 18). In the gender encoding network,
classification accuracies were significantly above chance level
in the right lingual gyrus (BA 17), left FG (BA 37), right ITG (BA
37), left MTG (BA 19), right pSTS (BA 22), right postcentral gyrus
(BA 2), right SMA (BA 6), bilateral insula (BA 13), right IFG (BA
47), and right MFG (BA 6, P < 0.05, FDR correction). Among these
regions, the classification accuracies of gender were significantly
higher than one of the other two attributes in the right lingual
(BA 17), left FG (BA 37), left MTG (BA 19), right postcentral gyrus
(BA 2), left insula (BA 13), and right IFG (BA 47), but no cluster
has significantly higher classification accuracies than both of the
other two attributes. In the emotional state encoding network,
classification accuracies were significantly above chance level in
the bilateral lingual gyri (BA 17, 18), bilateral IOG (BA 18), bilateral
MOG (BA 19), bilateral SOG (BA 7, 18, 19), bilateral FG (BA 19),
bilateral ITG (BA 37), bilateral MTG (BA 39), bilateral IPL (BA 40),
bilateral SPL (BA 7), bilateral postcentral gyri (BA 3), bilateral
precentral gyri (BA 6), left SMA (BA 6), right SFG (BA 11), right
MFG (BA 6), and right IFG (BA 46, P < 0.05, FDR correction). Among
these regions, the classification accuracies of emotional state
were significantly higher than one of the other two attributes
in the left postcentral gyrus (BA 3), left SMA (BA 6), and right
FG (BA 19), and significantly higher than both of the other two
attributes in the bilateral lingual gyri (BA 17, 18), bilateral IOG
(BA 18), bilateral MOG (BA 19), bilateral SOG (BA 7, 18, 19), left
FG (BA 19), left ITG (BA 37) bilateral MTG (BA 39), and bilateral
SPL (BA 7).

Correlation between neural representations and
behavioral results
Not all information that can be read out from brain activity
is directly used by the brain to guide behaviors. To investigate
whether the brain regions revealed by RSA were correlated with
participants’ behavioral discrimination of each attribute, we cal-
culated the correlation between behavioral RDMs and neural
RDMs in the clusters identified in the multiple regression RSA.
Figure 4 shows the correlation on each cluster (P < 0.05, FDR
correction). Most of the clusters showed significant correlations
between behavioral and neural responses.

Discussion
The present study investigated the brain encoding of multidi-
mensional BM information. Using multiple regression RSA, we
identified distributed brain networks related to facing direction,
gender, and emotional state processing. These brain areas were
governed by a recurrently interactive mechanism that the pro-
cessing of each attribute was influenced by the others, leading
to a hierarchical structure: the respective neural encoding of
facing direction, gender, and emotional state is modulated by each
other in descending order. Among the three attribute encoding
networks, a portion of the brain areas was specific to the classifi-
cation of the corresponding attribute. Most of these areas showed
significant correlations between behavioral and neural responses.
Taken together, these results revealed the distributed and hierar-
chical brain mechanisms of multidimensional BM processing and
provided constraints on computational models of BM perception.

Recurrently interactive multidimensional BM
attribute encoding
While a few prior studies have investigated the brain substrates
underlying particular BM attribute perception or its cognitive
effect (De Lussanet et al. 2008; Michels et al. 2009; Atkinson et al.
2012; Alaerts et al. 2014; Goldberg et al. 2015; Jastorff et al. 2015;
Poyo Solanas et al. 2020), they have focused on the processing
of a single attribute of BM, and hence could not address in
what order different BM attributes are encoded in the brain and
how they interact with each other. The current study extended
previous findings and, for the first time, investigated the brain
network related to the neural encoding of BM attributes from a
multidimensional perspective. Although different BM attributes
convey different levels of information, the current study demon-
strated that the neural encodings of different BM attributes are
recurrently interactive. It has been long assumed that low-level
and simple features are extracted early in the visual system while
high-level and complex attributes are processed at a relatively
late stage of visual processing (Rousselet et al. 2004). Among
BM attributes, facing direction conveys relatively “low-level” ori-
entation information, which can be similarly transmitted by a
lot of inanimate objects such as moving cars or moving balls.
Gender conveys biological or physiological information that is
specific to living beings. The emotional state represents relatively
“high-level” mental state information. Recently, researchers have
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Fig. 4. Correlations between behavioral and neural RDMs on the significant clusters defined in RSA. Behavioral RDM for facing direction (A), gender (B),
and emotional state (C) of a representative participant. The correlation results for facing direction (D), gender (E), and emotional state (F). Results were
Fisher transformed. ∗P < 0.05 after FDR correction.

proposed a dual-process theory for BM perception, which suggests
that detecting facing direction is a rapid preattentive process
while evaluating gender and emotional state requires more cog-
nitive processes (Hirai and Senju 2020). However, our DC analysis
demonstrates that the processes of BM attributes are recurrently
influenced by each other rather than in a simply independent or
feedforward manner.

The DC analysis also reveals a hierarchical structure among
the three attributes. The DC for facing direction is minimum, sug-
gesting its neural encoding is more influenced by the processing
of the other attributes. The DC for emotional state is maximum,
suggesting its neural encoding is less influenced by the processing
of the other attributes. This pattern of results is in accordance
with previous behavioral findings on BM perception. Although it
has long been thought that the gender information of both the

agent and the observer could affect the perception of emotional
state (Cutting and Kozlowski 1977; Johnson et al. 2011; Kret et al.
2011), researchers also found that the emotional state of BM could
affect the gender judgment (Johnson et al. 2011). Furthermore,
the gender of the BM stimulus has been shown to modulate the
perception of its facing direction (Yang et al. 2014).

Brain network as a function of BM attribute
extraction
This study revealed extensive networks involved in extracting
facing direction, gender, and emotional state from BM. Among
these networks identified by RSA, MVPA further confirmed that
the classification accuracies for the corresponding attributes
were significantly above chance level in a bulk of areas. More
importantly, in some areas, the classification accuracies for
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the corresponding attribute were significantly higher than the
other attributes, implying that the neural responses were more
distinguishable for the corresponding attribute. On the other
hand, to further explore whether the fMRI signals related to
behavioral results, we correlated neural RDMs to behavioral RDMs
and found that most of the brain areas in the networks identified
by RSA showed significant correlations. This pattern of results
provides a preliminary link between the behavioral performance
and the corresponding neural substrates for processing BM
attributes.

Among the facing direction encoding network, the roles of the
lingual gyri, SOG, FG, SPL, postcentral gyri, and IFG seem to be
crucial. MVPA revealed that the facing direction classification
accuracies were significantly above chance level in the right IFG,
higher than one of the other attributes in the left SPL and bilateral
postcentral gyri, and higher than the other two attributes in
the bilateral lingual gyri, right SOG, and bilateral FG. The neural
responses of all the above regions were significant correlated with
behavioral results. Additionally, in our results, the bilateral FG,
bilateral postcentral gyri, and bilateral IFG have been reported in
previous studies on BM facing direction (De Lussanet et al. 2008;
Michels et al. 2009). These results share a partially overlapping
brain network with those obtained from face and body perception.
The brain regions representing the facing direction of bodies
involved the FG (Taylor et al. 2010; Vangeneugden et al. 2012;
Bellot et al. 2021) and pSTS (Vangeneugden et al. 2014). Recently,
researchers have demonstrated a stimulus-independent neural
code for the facing direction of face and body in the occipitotem-
poral cortex, including the occipital face area, extrastriate body
area, lateral occipital complex, and early visual cortex (Foster et al.
2022). These brain regions are close to the FG and MTG in the
facing direction network observed in the current study. Besides,
considering the finding in the previous electroencephalography
(EEG) study that the facing direction of BM can trigger an early
directing attention negativity in the occipito-parietal electrodes
(PO5/6 and PO7/8; Wang et al. 2014), we highlight the role of SPL.
Moreover, previous case studies have also provided evidence that
patients with parietal lobe lesions have difficulty in discriminat-
ing the facing direction of BM, but not the direction of low-level
motion (Battelli et al. 2003).

Among the gender encoding network, MVPA revealed that in
the right pSTS, left FG, left MTG, left insula, and right lingual
gyrus, the gender classification accuracies were significantly
above chance level and higher than one of the other attributes.
The right lingual gyrus, left FG, and left MFG also encoded the
similarity patterns revealed by the behavioral experiment. These
results share a partially overlapping brain network with previous
results on face and body processing. It is reported that the brain
regions representing the gender of face and body include the FG
(Contreras et al. 2013), pSTS, insula, and SMA (Kret et al. 2011).

Among the emotional state encoding network, the MOG, ITG,
MTG, and SPL might be crucial. MVPA revealed that in the bilat-
eral MOG, ITG, MTG, and SPL, the emotional state classification
accuracies were significantly above chance level and higher than
other attributes. In the bilateral MOG, bilateral ITG, bilateral
MTG, and bilateral SPL, the correlations between neural responses
and behavioral results were significant. Additionally, the FG, ITG,
MTG, precentral gyrus, and IFG have also been reported in pre-
vious studies (Jastorff et al. 2015; Ross et al. 2019; Poyo Solanas
et al. 2020). Precious studies have revealed a broad network for
emotional state processing on other socially relevant informa-
tion. Concentrated on the studies about happy and sad emo-
tions, we concluded that the brain regions processing emotional

information include the MFG (Kesler-West et al. 2001; McLellan
et al. 2012), dorsolateral prefrontal cortex (Vanderhasselt et al.
2011), SFG, IFG (McLellan et al. 2012), ACC (Yoshino et al. 2010),
amygdala (Gaffrey et al. 2011), and insula (Hall et al. 2014). It
seems that emotional state processing involves complex neural
mechanisms that are influenced by many factors, such as emo-
tion types and the expressing moods.

A distributed and hierarchical neural network for
BM processing
To the best of our knowledge, three main neural models have been
proposed to account for BM processing. Giese and Poggio (2003)
proposed a hierarchical and feedforward computational model
with two parallel pathways for the processing of the form and
motion of BM. Both pathways consist of several levels and finally
converge at the STS. This model does not involve the processing
of different BM attributes. Lange and Lappe (2006) proposed a
two-stage computational model. The first stage analyzes the form
information in each frame, then the second stage analyzes the
temporal order of the selected frames, leading to the output on the
global motion aspects of the stimulus. This model can well explain
the processing of facing direction, but hardly expand to the pro-
cessing of other attributes. Hirai and Senju (2020) proposed a
two-process model for BM perception. While this model supposed
that the first system detects foot motion (thus process facing
direction) and the second system evaluates global bodily actions
(thus process gender and emotional state), the main purpose of
the model was to separate the rapid, subcortical system from the
slow, cortical system. Here we developed a theoretical model for
multidimensional BM processing based on our results and the
findings from previous studies.

BM perception, as a crucial visual process for socially
relevant information, is analogous to face perception, which
is accomplished by a dynamic and hierarchical neural system
(Giese and Poggio 2003; Hirai and Senju 2020). Following the
model of distributed neural system for multidimensional face
perception (Haxby et al. 2000), we propose a model that mediates
the perception of multidimensional BM information (Fig. 5). The
model has a branching structure: a core system for the visual
analysis of BM is distinguished from an extended system that
processes the attributes gleaned from BM. The core system
comprises three brain regions: the pSTS, the MT+, and the FG. The
current study demonstrates that these regions are substantially
involved in the neural representations of all the three BM
attributes. Anatomical configuration suggests a hierarchical
organization among these regions, in which the middle temporal
cortex may provide input to the lateral FG and STS (Gauthier and
Logothetis 2000; Cross et al. 2010). Functional connectivity studies
of BM processing suggest that the right FG, MT+, and STS are
functionally integrated (Dasgupta et al. 2017; Sokolov et al. 2018).
Among the core system, the pSTS is the core brain area dedicated
to BM processing (Allison et al. 2000; Blake and Shiffrar 2007; Yovel
and O’Toole 2016), whose causal role has been assessed in brain
stimulation (Grossman et al. 2005; van Kemenade et al. 2012) and
brain lesion (Saygin 2007) studies. The pSTS not only selectively
responds to BM compared with non-BM stimuli (Bonda et al. 1996;
Howard et al. 1996; Chang et al. 2018), but also exhibits special
responses across different types of BM stimuli (Frith and Frith
2010). Accumulating evidence also suggests the critical functions
of MT+ (Herrington et al. 2007; Jastorff and Orban 2009) and FG
(Vaina et al. 2001; Peelen et al. 2006; Lichtensteiger et al. 2008;
Michels et al. 2009; Sokolov et al. 2018) in BM processing. The
MT+ is a vital region for analyzing the kinematic cues of BM
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Fig. 5. The model of a distributed and hierarchical system for BM attribute representations. The core system (in orange color) is composed of pSTS, MT+,
and FG. The extended system for facing direction representation (in blue color) is composed of SPL, postcentral gyrus, precentral gyrus, and IFG. The
extended system for gender representation (in red color) is composed of SMA, insula, and MFG. The extended system for emotional state representation
(in green color) is composed of MOG, ITG, SPL, amygdala, and SFG.

(Jastorff and Orban 2009), while the FG plays a key role in body
form processing (Thompson and Parasuraman 2012).

The extended system consists of distinct brain regions for
further processing the different BM attributes, in concert with
other neural networks. The neural network for processing facing
direction includes the SPL, postcentral and precentral gyri, and
IFG. The neural activity in the precentral and postcentral gyri
showed higher classification accuracies for facing direction than
the other attributes and correlated with behavioral results. More-
over, the facing direction of BM is an important social cue that
can induce a reflexive attentional orienting effect in the occipito-
parietal region (Shi et al. 2010; Wang et al. 2014). Facing direction
thus provides a basis for implying the goal of an individual, which
might be extracted in the IFG (De Lussanet et al. 2008; Thomp-
son and Parasuraman 2012). The neural network for processing
gender includes the SMA, insula, and MFG. These brain regions
were revealed by the present study as well as reported in previous
studies on gender perception (de Gelder et al. 2010; Kret et al.
2011). The neural network for processing emotional state includes
the MOG, ITG, SPL, SFG, and amygdala. The ITG is identified as a
relevant region for the perception of human bodies and is directly
neighbored by the FG (Weiner and Grill-Spector 2011), and shows
increased activity in response to emotional body expressions (de
Gelder et al. 2004; Prochnow et al. 2013). The SPL is found to
be activated by the visual stimulation of socio-emotional stimuli
(de Gelder et al. 2015). SFG is reported in previous studies on
emotional state perception (Mak et al. 2009; McLellan et al. 2012).
In the current study, the SFG was identified in multiple regression
RSA for emotional state and correlated with behavioral results.
The amygdala is considered a hub region for emotional processing
(Phelps 2006; Sergerie et al. 2008; Andrewes and Jenkins 2019).
Therefore, we take it into the emotional state representation
network in the extended system. However, our RSA did not reveal
the amygdala in emotional BM processing, which is likely due

to that the emotions employed in the current study were happy
and sad, and did not evoke strong neural activation in the amyg-
dala. Previous studies that reported amygdala activations in BM
emotional processing usually adopted fearful or angry emotions
(Jastorff et al. 2015; Poyo Solanas et al. 2020). Therefore, further
work is required to employ a variety of emotion types to verify
the emotional state representation network for BM perception.

Our model is the first to consider the neural mechanism for the
processing of BM attributes. Previous models primarily described
neural processing from the perception of basic visual features (e.g.
form, local motion) to the recognition of integrated BM informa-
tion. The advantage of our model is that it provides a different
perspective for BM processing, which concentrates on the neural
encodings of distinct physical, biological, and social attributes
from BM signals. Future directions may include analyzing the
functional connections of distinct BM attribute representations in
the model and linking them with behavioral performance, as well
as further testing the model’s predictive capabilities.

Study limitations
The main limitation of the present study was that only three BM
attributes were employed. The human visual system can extract
and process many other attributes of BM, such as identity (Ng
et al. 2006; Westhoff and Troje 2007; Baragchizadeh and O’Toole
2017), personality trait (Klüver et al. 2016), age (Montepare and
Zebrowitz-McArthur 1988), and familiarity (Hahn and O’Toole
2017). Thus, further studies could simultaneously consider more
attributes to investigate how the brain encodes distinct physical,
biological, and social attributes from BM. Besides, a larger sample
size may be necessary for a study employing more BM attributes.

While we discovered a hierarchical structure for processing
multidimensional BM, we were unable to determine how the
processing of distinct BM attributes unfolds over time due to
the limited temporal resolution of fMRI. Further studies utilizing
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techniques such as magnetoencephalography (MEG) or EEG could
shed light on the temporal characteristics of these processes.

Our results revealed significant correlations between behav-
ioral and neural responses in most of the regions of the three BM
attributes networks. However, the current behavioral experiment
had two limitations. Firstly, the behavioral results relied on sub-
jective evaluation of BM attributes, which might be influenced
by individuals’ judgment criteria. Future studies could employ
an objective BM attribute discrimination paradigm. Secondly, the
behavioral experiment was conducted before the fMRI scanning,
and a more direct link between behavioral and neural responses
could be obtained from concurrent behavioral responses during
fMRI scanning.

Conclusions
The brain representations of multidimensional BM engage a dis-
tributed and hierarchical network, which consists of a core sys-
tem (i.e. the pSTS, MT+, and FG) and an extended system that
processes the distinct attributes of BM. The neural encodings of
different BM attributes are governed by a recurrently interactive
mechanism that the processing of each attribute is influenced
by the others, leading to a hierarchical structure in which the
respective neural representation of facing direction, gender, and
emotional state is modulated by each other in descending order.

Data availability
Anonymized data, codes, and the stimuli associated with this
work are available at http://ir.psych.ac.cn/handle/311026/43299.
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